Skip to main content

Advertisement

Log in

Carbon Fluxes from River to Sea: Sources and Fate of Carbon in a Shallow, Coastal Lagoon

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Lagoons act to transport, retain (via sedimentation), and divert (via outgassing) carbon (C) on its route from land to sea. Their role in transporting vs. attenuating C fluxes is important to understanding global C cycles and sources of organic matter supporting food webs. Here, we present a C budget for a large coastal lagoon in the Baltic region that incorporates measurements of river-estuary, estuary-marine, and sediment-water exchanges, along with internal processes (production and respiration) governing transformations among C fractions. Organic C fluxes were dominated by internal cycling (GPP and R), whereas inorganic C fluxes were largely dependent on hydrological transport. Sediment-water exchange of DIC and DOC was of lesser importance, despite the shallowness of the lagoon. On an annual basis, the lagoon was a net source of organic matter (OM) to the Baltic Sea as export of dissolved and particulate fractions exceeded riverine and marine inputs by 37 ± 4%. Export of OM was due to internal production of POC via phytoplankton photosynthesis. We combined the mass balance and metabolism results with a consumer energetics approach to align C sources with C flows through the lagoon food web. We estimate that the annual harvested fish production accounts for nearly 22% of OM inputs from internal and external sources. A comparison with C flux data from the Chesapeake region allowed us to appreciate how ecosystems at the river-estuarine transition differ in their roles as pipes vs. reactors, depending on the sources and timing of OM inputs, and how these differences constrain food web energetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Data can be accessed upon request to the corresponding author.

References

  • Abril, G., H. Etcheber, P. Le Hir, P. Bassoullet, B. Boutier, and M. Frankignoulle. 1999. Oxic/anoxic oscillations and organic carbon mineralisation in an estuarine maximum turbidity zone (The Gironde, France). Limnology and Oceanography 44: 1304–1315.

    Article  CAS  Google Scholar 

  • Aleksandrov, S.V. 2010. Biological production and eutrophication of Baltic Sea estuarine ecosystems: the Curonian and Vistula Lagoons. Marine Pollution Bulletin 61 (4): 205–210.

    Article  CAS  Google Scholar 

  • Aller, R.C. 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology 114: 331–345.

    Article  CAS  Google Scholar 

  • Anderson, L.G., P.O.J. Hall, A. Iverfeldt, R. van der Loejf, M. Michiel, B. Sundby, and S.F. Westerlund. 1986. Benthic respiration measured by total carbonate production. Limnology and Oceanography 31 (2): 319–329.

    Article  CAS  Google Scholar 

  • Bartoli, M., et al. 2018. Drivers of cyanobacterial blooms in a hypertrophic lagoon. Frontiers in Marine Science 5: 434. https://doi.org/10.3389/fmars.2018.00434.

    Article  Google Scholar 

  • Bauer, J.E., W.J. Cai, P.A. Raymond, T.S. Bianchi, C.S. Hopkinson, and P.A. Regnier. 2013. The changing carbon cycle of the coastal ocean. Nature 504 (7478): 61–70.

    Article  CAS  Google Scholar 

  • Borges, A.V., L.S. Schiettecatte, G. Abril, B. Delille, and F. Gazeau. 2006. Carbon dioxide in European coastal waters. Estuarine, Coastal and Shelf Science 70 (3): 375–387.

    Article  CAS  Google Scholar 

  • Boynton, W.R., M.A.C. Ceballos, E.M. Bailey, C.L.S. Hodgkins, J.L. Humphrey, and J.M. Testa. 2018. Oxygen and nutrient exchanges at the sediment-water interface: a global synthesis and critique of estuarine and coastal data. Estuaries and Coasts 41: 301–333.

    Article  CAS  Google Scholar 

  • Bresciani, M., C. Giardino, D. Stroppiana, R. Pilkaitytė, M. Zilius, M. Bartoli, and A. Razinkovas. 2012. Retrospective analysis of spatial and temporal variability of chlorophyll-a in the Curonian Lagoon. Journal Coastal Conservation 16 (4): 511–519.

    Article  Google Scholar 

  • Bučas, M., Z. Sinkevičienė, M. Kataržytė, D. Vaičiūtė, J. Petkuvienė, V. Stragauskaitė, and R. Ilginė. 2019. How much can the occurrence and coverage of charophytes in an estuarine lagoon (Curonian Lagoon) be explained by environmental factors? Estuarine, Coastal and Shelf Science 216: 128–138.

    Article  Google Scholar 

  • Bukaveckas, P.A. 2022. Carbon dynamics at the river-estuarine transition: a comparison among tributaries of Chesapeake Bay. Biogeosciences. https://doi.org/10.5194/bg-2021-209.

    Article  Google Scholar 

  • Bukaveckas, P.A., M. Beck, D. Devore, and W.M. Lee. 2018. Climatic variability and its role in regulating C, N and P retention in the James River Estuary. Estuarine, Coastal and Shelf Science 205: 161–173.

    Article  CAS  Google Scholar 

  • Cai, W.J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3: 123–145.

    Article  Google Scholar 

  • Canuel, E.A., S.S. Cammer, H.A. McIntosh, and C.R. Pondell. 2012. Climate change impacts on the organic carbon cycle at the land-ocean interface. Annual Review of Earth and Planetary Sciences 40: 685–711.

    Article  CAS  Google Scholar 

  • Cauwet, G. 1999. Determination of dissolved organic carbon (DOC) and nitrogen (DON) by high temperature combustion. In Methods of seawater analysis, 3rd ed., ed. K. Grasshoff, K. Kremling, and M. Ehrhard, 407–420. Weinheim: Wiley-VCH.

    Chapter  Google Scholar 

  • Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication model. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Cobain, M.R.D., R.A.R. McGill, and C.N. Trueman. 2022. Stable isotopes demonstrate seasonally stable benthic-pelagic coupling as newly fixed nutrients are rapidly transferred through food chains in an estuarine fish community. Journal of Fish Biology. https://doi.org/10.1111/fb.1505.

    Article  Google Scholar 

  • Cole, J.J., Y. Prairie, N. Caraco, W. Mcdowell, L. Tranvik, R. Striegl, C. Duarte, P. Kortelainen, J. Downing, J. Middleburg, and J. Melack. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Cresson, P., M. Travers-Trolet, M. Rouquette, C.-A. Timmerman, C. Giraldo, S. Lefebvre, and B. Ernande. 2017. Underestimation of chemical contamination in marine fish muscle tissue can be reduced by considering variable wet:dry weight ratios. Marine Pollution Bulletin. 123: 279–285.

    Article  CAS  Google Scholar 

  • Dalsgaard, T., et al. 2000. Protocol handbook for NICE – nitrogen cycling in estuaries. A project under the EU research programme: marine science and technology (MAST III). Silkeborg: National Environmental Research Institute.

    Google Scholar 

  • Dreyfus, J., Y. Monrolin, C.J. Pestana, P.J. Reeve, E. Sawade, K. Newton, L. Ho, C.W.K. Chow, and G. Newcombe. 2016. Identification and assessment of water quality risks associated with sludge supernatant recycling in the presence of cyanobacteria. Journal of Water Supply: Research and Technology 65 (6): 441–452.

    Article  Google Scholar 

  • Ferguson, A.J.P., and B.D. Eyre. 2010. Carbon and nitrogen cycling in a shallow productive sub-tropical coastal embayment (Western Moreton Bay, Australia): the importance of pelagic-benthic coupling. Ecosystems 13: 1127–1144.

    Article  CAS  Google Scholar 

  • Ferrarin, C., A. Razinkovas, S. Gulbinskas, G. Umgiesser, and L. Bliudziute. 2008. Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia 611: 133–146.

    Article  Google Scholar 

  • Frankignoulle, M., A. Gwenaël, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, and J.-M. Théate. 1998. Carbon dioxide emission from European estuaries. Science 282 (5388): 434–436.

    Article  CAS  Google Scholar 

  • Funkquist, L. 2003. A unified model system for the Baltic Sea. Elsevier Oceanography Series 69: 516–518.

    Article  Google Scholar 

  • Gazeau, F., S.V. Smith, B. Gentili, M. Frankignoulle, and J.P. Gattuso. 2004. The European coastal zone: characterization and first assessment of ecosystem metabolism. Estuarine, Coastal and Shelf Science 60 (4): 673–694.

    Article  CAS  Google Scholar 

  • Grasshoff, K., M. Ehrhardt, and K. Kremling. 1983. Methods of seawater analysis, 2nd ed. Weinheim: Verlag Berlin Chemie.

    Google Scholar 

  • Guardiani, J., C.R. Tobias, and R. Smith. 2022. Seasonal carbon dynamics in a temperate lagoonal estuary: New River, NC, USA. Estuaries and Coasts 45: 772–792.

    Article  Google Scholar 

  • Guo, L., and R.W. Macdonald. 2006. Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (13C, 14C and 15N) composition of dissolved, colloidal and particulate phases. Global Biogeochemical Cycles 20: GB2011.

    Article  Google Scholar 

  • Gustafsson, E., C.M. Mörth, C. Humborg, and B.G. Gustafsson. 2015. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea. Journal of Marine Systems 148: 122–130.

    Article  Google Scholar 

  • Hansell, D.A. 2005. Dissolved organic carbon reference material program. Eos, Transactions American Geophysical Union 86 (35): 318–318.

    Article  Google Scholar 

  • Hanson, P.C., M.L. Pace, S.R. Carpenter, J.J. Cole, and E.H. Stanley. 2015. Integrating landscape carbon cycling: research needs for resolving organic carbon budgets of lakes. Ecosystems 18: 363–375.

    Article  CAS  Google Scholar 

  • Heiri, O., A.F. Lotter, and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25 (1): 101–110.

    Article  Google Scholar 

  • HELCOM. 2006. Assessment of coastal fish in the Baltic Sea Baltic Sea Environment Proceedings No. 103 A. ISSN 0357–2994.

    Google Scholar 

  • Hellings, L., F. Dehairs, S. Van Damme, and W. Baeyens. 2001. Dissolved inorganic carbon in a highly polluted estuary (the Scheldt). Limnology and Oceanography 46 (6): 1406–1414.

    Article  CAS  Google Scholar 

  • Hoellein, T.J., D.A. Bruesewitz, and D.C. Richardson. 2013. Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnology and Oceanography 58: 2089–2100.

    Article  CAS  Google Scholar 

  • Howarth, R.W., F. Chan, D.J. Conley, J. Garnier, S.C. Doney, R. Marino, and G. Billen. 2011. Coupled biogeochamical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and Environt 9: 18–26.

    Article  Google Scholar 

  • Jeffrey, S.T., and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie Und Physiologie Der Pflanzen 167: 191–194.

    Article  CAS  Google Scholar 

  • Kemp, M.J., et al. 2005. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Lara, R.J., V. Alder, C.A. Franzosi, and G. Kattner. 2010. Characteristics of suspended particulate organic matter in the southwestern Atlantic: influence of temperature, nutrient and phytoplankton features on the stable isotope signature. Journal of Marine Systems 79 (1): 199–209.

    Article  Google Scholar 

  • Laruelle, G.G., H.H. Dürr, R. Lauerwald, J. Hartmann, C.P. Slomp, N. Goossens, and P.A.G. Regnier. 2013. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences 17 (5): 2029–2051.

    Article  Google Scholar 

  • Lewis, E., and D.W.R. Wallace. 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.

    Book  Google Scholar 

  • Lorrain, A., N. Savoye, L. Chauvaud, Y.-M. Paulet, and N. Naulet. 2003. Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Analytica Chimica Acta 491 (2): 125–133.

    Article  CAS  Google Scholar 

  • Maranger, R., S.E. Jones, and J.B. Cotner. 2018. Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe. Limnology and Oceanography Letters 3 (3): 89–101.

    Article  CAS  Google Scholar 

  • Middelburg, J.J., and P.M. Herman. 2007. Organic matter processing in tidal estuaries. Marine Chemistry 106 (1): 127–147.

    Article  CAS  Google Scholar 

  • Mortazavi, B., A.A. Riggs, J.M. Caffrey, H. Genet, and S.W. Phipps. 2012. The contribution of benthic nutrient regeneration to primary production in a shallow, eutrophic estuary, Weeks Bay, Alabama. Estuaries and Coasts 35: 862–877.

    Article  CAS  Google Scholar 

  • Morton, R., and B.L. Henderson. 2008. Estimation of non-linear trends in water quality: an improved approach using generalized additive models. Water Resources Research 44: W07420.

    Article  Google Scholar 

  • Murphy, R.R., E. Perry, J. Harcum, and J. Keisman. 2019. A generalized additive model approach to evaluating water quality: Chesapeake Bay case study. Environmental Modelling and Software 118: 1–13.

    Article  Google Scholar 

  • Ni, H.-G., F.-H. Lu, X.-L. Luo, H.-Y. Tian, and E.Y. Zeng. 2008. Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China. Marine Pollution Bulletin 56: 1150–1157.

    Article  CAS  Google Scholar 

  • Obrador, B., and J.L. Pretus. 2013. Carbon and oxygen metabolism in a densely vegetated lagoon: implications of spatial heterogeneity. Limnetica 32 (2): 321–336.

    Google Scholar 

  • O’Conner, J.A., D.V. Erler, A. Ferguson, and D.T. Maher. 2022. The tidal freshwater river zone: physical properties and biogeochemical contribution to estuarine hypoxia and acidifcation - the “hydrologic switch.” Estuarine, Coastal and Shelf Science 268: 107786. https://doi.org/10.1016/j.ecss.2022.107786.

    Article  CAS  Google Scholar 

  • Orth, D.J., Y. Jiao, J.D. Schmidt, C.D. Hilling, J.A. Emmel, and M.C. Fabrizio. 2017. Dynamics and role of non-native blue catfish Ictalurus furcatus in Virginia’s tidal waters. Virginia Department of Game and Inland Fisheries. https://doi.org/10.13140/RG.2.2.35917.54246. Submitted final report.

    Book  Google Scholar 

  • Parsons, T.R., Y. Maita, and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis, 173. Oxford: Pergamon Press.

    Google Scholar 

  • Patrick, C.J., D.J. McGarvey, J.H. Larson, W.F. Cross, D.C. Allen, A.C. Benke, T. Brey, A.D. Huryn, J. Jones, C.A. Murphy, C. Ruffing, P. Saffarinia, M.R. Whiles, J.B. Wallace, and G. Woodward. 2019. Precipitation and temperature drive continental-scale patterns in stream invertebrate production. Science Advances 5: eaav2348.

    Article  CAS  Google Scholar 

  • Petkuviene, J., M. Zilius, I. Lubiene, T. Ruginis, G. Giordani, A. Razinkovas-Baziukas, and M. Bartoli. 2016. Phosphorus cycling in a freshwater estuary impacted by cyanobacterial blooms. Estuaries and Coasts 39: 1386–1402.

    Article  CAS  Google Scholar 

  • Regnier, P., S. Arndt, N. Goossens, C. Volta, G. Laruelle, R. Lauerwald, and J. Hartmann. 2013. Modelling estuarine biogeochemical dynamics: from the local to the global scale. Aquatic Geochemistry 19 (5–6): 591–626.

    Article  CAS  Google Scholar 

  • Richey, J.E., J.M. Melack, A.K. Aufdenkampe, V.M. Ballester, and L.L. Hess. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617–620.

    Article  CAS  Google Scholar 

  • Ruegg, J., C.C. Conn, E.P. Anderson, T.J. Battin, E.S. Bernhardt, M.B. Canadell, S.M. Bonjour, J.D. Hosen, N.S. Marzolf, and C.B. Yackulic. 2021. Thinking like a consumer: linking aquatic basal metabolism and consumer dynamics. Limnology and Oceanography: Letters 6: 1–17.

    Article  Google Scholar 

  • Smith, V.H. 2003. Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environmental Science and Pollution Research 10: 126–139.

    Article  CAS  Google Scholar 

  • Tanner, D.K., J.C. Brazner, and V.J. Brady. 2000. Factors influencing carbon, nitrogen and phosphorus content of fish from a Lake Superior coastal wetland. Canadian Journal of Fisheries and Aquatic Sciences. 57: 1243–1251.

    Article  CAS  Google Scholar 

  • Tranvik, L.J., J.J. Cole, and Y.T. Prairie. 2018. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnology and Oceanography Letters 3 (3): 41–48.

    Article  Google Scholar 

  • Umgiesser, G., P. Zemlys, A. Erturk, A. Razinkova-Baziukas, J. Mėžinė, and C. Ferrarin. 2016. Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing. Ocean Science 12 (2): 391–402.

    Article  Google Scholar 

  • Vaičiūtė, D., M. Bučas, M. Bresciani, T. Dabulevičienė, J. Gintauskas, M. Mėžinė, E. Tiškus, G. Umgiesser, J. Morkūnas, F. De Santi, and M. Bartoli. 2021. Hot moments and hotspots of cyanobacteria hyperblooms in the Curonian Lagoon (SE Baltic Sea) revealed via remote sensing-based retrospective analysis. Science of Total Environment 769: 145053. https://doi.org/10.1016/j.scitotenv.2021.145053.

    Article  CAS  Google Scholar 

  • Volta, C., G.G. Laruelle, and P. Regnier. 2016. Regional carbon and CO2 budgets of North Sea tidal estuaries. Estuarine, Coastal and Shelf Science 176: 76–90.

    Article  CAS  Google Scholar 

  • Vybernaite-Lubiene, I., M. Zilius, G. Giordani, J. Petkuviene, D. Vaiciute, P.A. Bukaveckas, and M. Bartoli. 2017. Effect of algal blooms on retention of N, Si and P in Europe’s largest coastal lagoon. Estuarine, Coastal and Shelf Science 194: 217–228.

    Article  CAS  Google Scholar 

  • Vybernaite-Lubiene, I., M. Zilius, M. Bartoli, J. Petkuviene, P. Zemlys, M. Magri, and G. Giordani. 2022. Biogeochemical budgets of nutrients and metabolism in the Curonian Lagoon (south east Baltic Sea): spatial and temporal variations. Water 14 (2): 164. https://doi.org/10.3390/w14020164.

    Article  CAS  Google Scholar 

  • Wang, X., J. Wang, and J. Zhang. 2012. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PloS One 7 (8): e44334. https://doi.org/10.1371/journal.pone.0044334.

    Article  CAS  Google Scholar 

  • Ward, N.D., T.S. Bianchi, P.M. Medeiros, M. Seidel, J.E. Richey, R.G. Keil, and H.O. Sawakuchi. 2017. Where carbon goes when water flows: carbon cycling across the aquatic continuum. Frontiers in Marine Science 4: 7. https://doi.org/10.3389/fmars.2017.00007.

    Article  Google Scholar 

  • Wiik, E., H.A. Haig, N.M. Hayes, K. Finlay, G.L. Simpson, R.J. Vogt, and P.R. Leavitt. 2021. Generalized additive models of climatic and metabolic controls of subannual variation in pCO2 in productive hardwater lakes. Journal of Geophysical Research: Biogeosciences 123: 1940–1959.

    Article  Google Scholar 

  • Wood, S. 2006. Generalized additive models: an introduction with R, 1st ed. Boca Raton, FL: Chapman and Hall/CRC.

    Book  Google Scholar 

  • Yang, G., and D.L. Moyer. 2020. Estimation of non-linear water quality trends in high-frequency monitoring data. Science of the Total Environment 715: 136686.

    Article  CAS  Google Scholar 

  • Zemlys, P., C. Ferrarin, G. Umgiesser, S. Gulbinskas, and D. Bellafiore. 2013. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model. Ocean Science 9 (3): 573–584.

    Article  Google Scholar 

  • Zilius, M., M. Bartoli, M. Bresciani, M. Katarzyte, T. Ruginis, J. Petkuviene, I. Lubiene, C. Giardino, P.A. Bukaveckas, R. de Wit, and A. Razinkovas-Baziukas. 2014. Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuaries and Coasts 37 (3): 680–694.

    Article  CAS  Google Scholar 

  • Zilius, M., I. Vybernaite-Lubiene, D. Vaiciute, J. Petkuviene, P. Zemlys, I. Liskow, M. Voss, M. Bartoli, and P.A. Bukaveckas. 2018. The influence of cyanobacteria blooms on the attenuation of nitrogen throughputs in a Baltic coastal lagoon. Biogeochemistry 141 (2): 143–165.

    Article  CAS  Google Scholar 

  • Zilius, M., I. Vybernaite-Lubiene, D. Vaiciute, D. Overlingė, E. Grinienė, A. Zaiko, S. Bonaglia, I. Liskow, M. Voss, A. Andersson, S. Brugel, T. Politi, and P.A. Bukaveckas. 2021. Spatiotemporal patterns of N2 fixation in coastal waters derived from rate measurements and remote sensing. Biogeosciences 18: 1857–1871.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Lithuanian Marine Research Department of the Ministry of Environment for providing meteorological and Nemunas River discharge data, the Coast Guard District of the State Border Guard Service for logistic support, Ali Ertürk for help with carbon dioxide flux calculations, Tomas Ruginis for assistance in field sampling, and Linas Zozys (Lithuanian Nature Research Center) for providing data on fish landings from the Curonian Lagoon.

Funding

Contributions from IV-L and MZ were supported by a grant from the Research Council of Lithuania (“Unravelling hidden players and pathways of nitrogen cycling in the three largest European lagoons”; Agreement No. S-MIP-22-47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Bukaveckas.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Margaret R. Mulholland

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukaveckas, P.A., Barisevičiūtė, R., Zilius, M. et al. Carbon Fluxes from River to Sea: Sources and Fate of Carbon in a Shallow, Coastal Lagoon. Estuaries and Coasts 46, 1223–1238 (2023). https://doi.org/10.1007/s12237-023-01214-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-023-01214-w

Keywords

Navigation