Skip to main content

Advertisement

Log in

Integrating Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Based on empirical and synthetic research, lakes make, store, and mineralize organic carbon (OC) at rates that are significant and relevant to regional and global carbon budgets. Although some global-scale studies have examined specific processes such as carbon burial and CO2 exchange with the atmosphere, most studies of lake carbon cycling are from single systems, focus only on a specific habitat, and do not account for all of the major terms in OC budgets. Hence, most lake OC budgets are incomplete, leaving some key processes highly uncertain. To advance the analysis of the role of the inland waters in C-cycling, ecosystem science needs a new generation of studies that confront these shortcomings. Here we address research needs and priorities for improving OC budgets. We present ten key research questions and recommend a framework for essential ecosystem-scale studies of lake OC cycling. Answers to these ten questions will not only improve carbon budgets but also provide robust estimates of lake contributions to global and regional carbon cycling. In addition, studies of lake carbon budgets will provide relative autochthonous and allochthonous carbon fluxes, indicate sources and rates of carbon burial, improve quantification of lake-atmosphere carbon exchanges, better integrate lakes with terrestrial and lotic carbon dynamics, promote understanding of how climate and land-use change will impact lakes, and enable tests of ecological theory related to subsidies and food web stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Amon R, Benner R. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51. http://www.riversystems.washington.edu/lc/RIVERS/77_amon_rmw_41-41-51.pdf. Accessed 2 Sept 2014

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nat Geosci 2:598–600.

    Article  CAS  Google Scholar 

  • Berggren M, Ziegler SE, St-Gelais NF, Beisner BE, del Giorgio PA. 2014. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95:1947–59.

  • Brett MT, Arhonditsis GB, Chandra S, Kainz MJ. 2012. Mass flux calculations show strong allochthonous support of freshwater zooplankton production is unlikely. PLoS ONE 7:e39508. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3383696&tool=pmcentrez&rendertype=abstract. Accessed 5 May 2014

  • Cardoso SJ, Enrich-Prast A, Pace ML, Roland F. 2014. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol Oceanogr 59:48–54. http://www.aslo.org/lo/toc/vol_59/issue_1/0048.html. Accessed 27 Jan 2014

  • Carpenter SR. 1998. The need for large-scale experiments to assess and predict the response of ecosystems to perturbation. In: Pace ML, Groffman PM, Eds. Successes, limitations, and frontiers in ecosystem science. New York: Springer. p 287–312.

    Chapter  Google Scholar 

  • Carpenter S, Ludwig D, Brock W. 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9:751–71. doi:10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2.

    Article  Google Scholar 

  • Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES. 2005. Ecosystem subsidies: terrestrial support of aquatic food webs from 13 C addition to contrasting lakes. Ecology 86:2737–50. doi:10.1890/04-1282.

    Article  Google Scholar 

  • Caverly E, Kaste JM, Hancock GS, Chambers RM. 2013. Dissolved and particulate organic carbon fluxes from an agricultural watershed during consecutive tropical storms. Geophys Res Lett 40:5147–52. doi:10.1002/grl.50982.

    Article  CAS  Google Scholar 

  • Cole JJ. 2013. Freshwater ecosystems and the carbon cycle. In: Kinne O, Ed. Excellence in ecology. Book 18. Oldendorf/Luhe: International Ecology Institute.

    Google Scholar 

  • Cole J, Caraco N, Strayer D. 1989. A detailed organic carbon budget as an ecosystem-level calibration of bacterial respiration in an oligotrophic lake during midsummer. Limnol Oceanogr 34:286–96. http://www.aslo.org/lo/toc/vol_34/issue_2/0286.html. Accessed 6 Dec 2013

  • Cole J, Caraco N, Kling G, Kratz T. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–70. http://www.sciencemag.org/content/265/5178/1568.short. Accessed 20 March 2012

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85. doi:10.1007/s10021-006-9013-8.

    Article  Google Scholar 

  • Cole JJ, Carpenter SR, Kitchell J, Pace ML, Solomon CT, Weidel B. 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc Natl Acad Sci USA 108:1975–80. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3033307&tool=pmcentrez&rendertype=abstract. Accessed 27 July 2011

  • Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535. doi:10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2.

    Article  Google Scholar 

  • Dhillon GS, Inamdar S. 2013. Extreme storms and changes in particulate and dissolved organic carbon in runoff: entering uncharted waters? Geophys Res Lett 40:1322–7. doi:10.1002/grl.50306.

    Article  CAS  Google Scholar 

  • Dillon P, Molot L. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36:29–42. http://www.springerlink.com/index/R8T747813464N585.pdf. Accessed 23 June 2011

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22:1–10. http://www.agu.org/pubs/crossref/2008/2006GB002854.shtml. Accessed 21 July 2010

  • Driscoll C, Newton R. 1985. Chemical characteristics of Adirondack lakes. Environ Sci Technol 19:1018–24. doi:10.1021/es00141a604.

    Article  CAS  PubMed  Google Scholar 

  • Einsele G. 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob Planet Change 30:167–95.

    Article  Google Scholar 

  • Ferland M-E, del Giorgio PA, Teodoru CR, Prairie YT. 2012. Long-term C accumulation and total C stocks in boreal lakes in northern Québec. Global Biogeochem Cycles 26:1–10. http://www.agu.org/pubs/crossref/2012/2011GB004241.shtml. Accessed 27 Oct 2012

  • Fichot C, Benner R. 2014. The fate of terrigenous dissolved organic carbon in a river-influenced ocean margin. Global Biogeochem Cycles 28:300–18. doi:10.1002/2013GB004670/full.

    Article  CAS  Google Scholar 

  • Fisher S, Likens G. 1973. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–39. doi:10.2307/1942301.

    Article  Google Scholar 

  • Francis TB, Schindler DE, Holtgrieve GW, Larson ER, Scheuerell MD, Semmens BX, Ward EJ. 2011. Habitat structure determines resource use by zooplankton in temperate lakes. Ecol Lett 14:364–72. http://www.ncbi.nlm.nih.gov/pubmed/21314881. Accessed 04 May 2014

  • Galloway JN, Norton S a, Church MR. 1983. Freshwater acidification from atmospheric deposition of sulfuric acid: A conceptual model. Environ Sci Technol 17:541A–5A. http://www.ncbi.nlm.nih.gov/pubmed/22668109

  • Gasith A, Hasler A. 1976. Airborne litterfall as a source of organic matter in lakes. Limnol Oceanogr 21:253–8. http://www.jstor.org/stable/2835227. Accessed 27 Jan 2011

  • Gudasz C, Bastviken D, Premke K, Steger K, Tranvik LJ. 2012. Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnol Oceanogr 57:163–75. http://www.aslo.org/lo/toc/vol_57/issue_1/0163.html. Last Accessed 06 Jan 2012

  • Hanson PC, Bade DL, Carpenter SR, Kratz TK. 2003. Lake metabolism: Relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48:1112–9. http://www.aslo.org/lo/toc/vol_48/issue_3/1112.html

  • Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR, Foley JA. 2004. A model of carbon evasion and sedimentation in temperate lakes. Glob Chang Biol 10:1285–98. doi:10.1111/j.1529-8817.2003.00805.x/full.

    Article  Google Scholar 

  • Hanson PC, Hamilton DP, Stanley EH, Preston N, Langman OC, Kara EL. 2011. Fate of allochthonous dissolved organic carbon in lakes: A quantitative approach. PLoS One 6:1–12. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3136486&tool=pmcentrez&rendertype=abstract. Accessed 1 Aug 2011

  • Hanson P, Buffam I, Rusak J, Stanley E, Watras C. 2014. Quantifying lake allochthonous organic carbon budgets using a simple equilibrium model. Limnol Ocean 59:167–81. http://www.aslo.org/lo/pdf/vol_59/issue_1/0167.pdf. Accessed 28 Jan 2014

  • Hoellein TJ, Bruesewitz D a., Richardson DC. 2013. Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism. Limnol Oceanogr 58:2089–100. http://www.aslo.org/lo/toc/vol_58/issue_6/2089.html. Accessed 3 Feb 2014

  • Hotchkiss E, Hall R, Baker M, Rosi-Marshall E, Tank J. 2014. Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. J Geophys Res Biogeosci 119:982–95.

    Article  CAS  Google Scholar 

  • Houser J, Bade D, Cole J, Pace M. 2003. The dual influences of dissolved organic carbon on hypolimnetic metabolism: organic substrate and photosynthetic reduction. Biogeochemistry 64:247–69. doi:10.1023/A:1024933931691.

    Article  CAS  Google Scholar 

  • Huotari J, Ojala A, Peltomaa E, Nordbo A, Launiainen S, Pumpanen J, Rasilo T, Hari P, Vesala T. 2011. Long-term direct CO2 flux measurements over a boreal lake: five years of eddy covariance data. Geophys Res Lett 38:1–5. http://www.agu.org/pubs/crossref/2011/2011GL048753.shtml. Accessed 26 Nov 2011

  • ILEC. 1994. 1988–1993 Survey of the State of the World’s Lakes, volumes I–IV. Institute LBR, Ed. Nairobi: Otsu and United Nations Environment Programme

  • Jones S, Solomon C, Weidel B. 2012. Subsidy or subtraction: how do terrestrial inputs influence consumer production in lakes? Freshw Rev 5:37–49. doi:10.1608/FRJ-5.1.475.

    Article  Google Scholar 

  • Jonsson A, Meili M, Bergström A-K, Jansson M. 2001. Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnol Oceanogr 46:1691–700. http://www.aslo.org/lo/toc/vol_46/issue_7/1691.html

  • Karlsson J, Berggren M, Ask J, Byström P, Jonsson A, Laudon H, Jansson M. 2012. Terrestrial organic matter support of lake food webs: Evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol Oceanogr 57:1042–8. http://www.aslo.org/lo/toc/vol_57/issue_4/1042.html. Accessed 5 May 2014

  • Kastowski M, Hinderer M, Vecsei A. 2011. Long-term carbon burial in European lakes: analysis and estimate. Glob Biogeochem Cycles 25:1–12. http://www.agu.org/pubs/crossref/2011/2010GB003874.shtml. Accessed 10 Oct 2011

  • Kelly P, Solomon CT, Weidel BC, Jones S. 2014. Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton. Ecology 95:1236–42.

  • Kortelainen P, Pajunen H, Rantakari M, Saarnisto M. 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Glob Chang Biol 10:1648–53. doi:10.1111/j.1365-2486.2004.00848.x.

    Article  Google Scholar 

  • Kutser T, Pierson DC, Kallio KY, Reinart A, Sobek S. 2005. Mapping lake CDOM by satellite remote sensing. Remote Sens Environ 94:535–40.

    Article  Google Scholar 

  • Lambert T, Pierson-Wickmann A-C, Gruau G, Jaffrezic A, Petitjean P, Thibault J-N, Jeanneau L. 2013. Hydrologically driven seasonal changes in the sources and production mechanisms of dissolved organic carbon in a small lowland catchment. Water Resour Res 49:5792–803. doi:10.1002/wrcr.20466.

    Article  CAS  Google Scholar 

  • Leroux SJ, Loreau M. 2008. Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecol Lett 11:1147–56. http://www.ncbi.nlm.nih.gov/pubmed/18713270. Accessed 28 March 2014

  • Likens G. 1985. An ecosystem approach to aquatic ecology: mirror lake and its environment. New York: Springer.

    Book  Google Scholar 

  • Likens G, Bormann F, Pierce R, Eaton J, Johnson N. 1977. Biogeochemistry of a forested ecosystem. New York: Springer.

    Book  Google Scholar 

  • Likens G, Driscoll C, Buso D. 1996. Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–6. http://www.esf.edu/efb/mitchell/ClassReadings/Sci.272.244.246.pdf. Accessed 5 May 2014

  • MacIntyre S, Jonsson A, Jansson M, Aberg J, Turney DE, Miller SD. 2010. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophys Res Lett 37:n/a–n/a. doi:10.1029/2010GL044164.

  • Matthews DA, Effler SW. 2006. Long-term changes in the areal hypolimnetic oxygen deficit (AHOD) of Onondaga Lake: evidence of sediment feedback. Limnol Oceanogr 51:702–14. http://www.aslo.org/lo/toc/vol_51/issue_1_part_2/0702.html

  • Mattson M, Likens G. 1993. Redox reactions of organic matter decomposition in a soft water lake. Biogeochemistry 19. doi:10.1007/BF00000876

  • McConnaughey T, Labaugh J, Rosenberry D, Striegl R, Reddy M, Schuster P, Carter V. 1994. Carbon budget for a groundwater-fed lake: Calcification supports summer photosynthesis. Limnol Oceanogr 39:1319–32. http://wwwbrr.cr.usgs.gov/projects/GWC_Crystal/Scanned_files/Carbon_budget_for_a91.pdf. Accessed 5 May 2014

  • McDonald CP, Stets EG, Striegl RG, Butman D. 2013. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Global Biogeochem Cycles 27:285–95. doi:10.1002/gbc.20032.

    Article  CAS  Google Scholar 

  • Pace ML, Prairie YT. 2005. Respiration in Lakes. In: del Giorgio PA, Williams PB, Eds. Respiration in aquatic ecosystems. Oxford, UK: Oxford University Press. p 103–21.

    Chapter  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, Van de Bogert MC, Bade DL, Kritzberg ES, Bastviken D. 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–3. http://www.nature.com/nature/journal/v427/n6971/abs/nature02227.html. Accessed 27 Jan 2011

  • Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. http://www.jstor.org/stable/2952495. Accessed 27 Jan 2011

  • Porter JH, Nagy E, Kratz TK, Hanson P, Collins SL, Arzberger P. 2009. New eyes on the world: advanced sensors for ecology. Bioscience 59:385–97.

    Article  Google Scholar 

  • Porter JH, Hanson PC, Lin C-C. 2011. Staying afloat in the sensor data deluge. Trends Ecol Evol 27:1–9. http://www.ncbi.nlm.nih.gov/pubmed/22206661. Accessed 8 Jan 2012

  • Preston ND, Carpenter SR, Cole JJ, Pace ML. 2008. Airborne carbon deposition on a remote forested lake. Aquat Sci 70:213–24. doi:10.1007/s00027-008-8074-5.

    Article  CAS  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature 503:355–9. http://www.nature.com/doifinder/10.1038/nature12760. Accessed 20 Nov 2013

  • Read JS, Hamilton DP, Desai AR, Rose KC, Mac-Intyre S, Lenters JD, Smyth RL, Hanson PC, Cole JJ, Staehr PA, Rusak JA, Pierson DC, Brookes JD, Laas A, Wu CH. 2012. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys Res Lett 39:n/a–n/a. doi:10.1029/2012GL051886.

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, Laruelle GG, Lauerwald R, Luyssaert S, Andersson AJ, Arndt S, Arnosti C, Borges AV, Dale AW, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe DE, Leifeld J, Meysman FJR, Munhoven G, Raymond PA, Spahni R, Suntharalingam P, Thullner M. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607. http://www.nature.com/doifinder/10.1038/ngeo1830. Accessed 17 Sept 2013

  • Roehm CL, Prairie YT, del Giorgio PA. 2009. The pCO2 dynamics in lakes in the boreal region of northern Québec, Canada. Global Biogeochem Cycles 23:1–9. http://www.agu.org/pubs/crossref/2009/2008GB003297.shtml. Accessed 13 April 2012

  • Saunders G. 1980. Organic matter and decomposers. In: Le Cren E, McConnell R, Eds. The functioning of freshwater ecosystems. Cambridge: Cambridge University Press. p 341–92.

    Google Scholar 

  • Schindler DW. 1986. The significance of in-lake production of alkalinity. Water Air Soil Pollut 30:931–44.

    Article  CAS  Google Scholar 

  • Schindler J, Krabbenhoft D. 1998. The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream. Biogeochemistry 43:157–74. doi:10.1023/A%3A1006005311257.

    Article  CAS  Google Scholar 

  • Smith V. 1998. Cultural eutrophication of inland, estuarine, and coastal waters. In: Pace ML, Groffman P, Eds. Successes, limitations, and frontiers in ecosystem science. New York: Springer. p 7–49.

    Chapter  Google Scholar 

  • Sobek S, Algesten G, Bergstrom A-K, Jansson M, Tranvik LJ. 2003. The catchment and climate regulation of pCO2 in boreal lakes. Glob Chang Biol 9:630–41. doi:10.1046/j.1365-2486.2003.00619.x/full.

    Article  Google Scholar 

  • Solomon C, Bruesewitz D, Richardson, Rose K, Van de Bogert M, Hanson P, Kratz T, Larget B, Adrian R, Leroux Babin B, Chiu C-Y, Hamilton D, Gaiser E, Hendricks S, Istvanovics V, Laas A, O’Donnell D, Pace M, Ryder E, Staehr P, Torgersen T, Vanni M, Weathers K, Zhu G. 2013. Ecosystem respiration: Drivers of daily variability and background respiration in lakes around the globe. Limnol Oceanogr 58:849–66. http://faculty.newpaltz.edu/davidrichardson/files/Solomon2013-LO-EcosystemRespirationDriversDailyVariabilityBackgroundRespirationLakesGLEON.pdf. Accessed 23 Oct 2013

  • Staehr PA, Sand-jensen K. 2007. Temporal dynamics and regulation of lake metabolism. Limnol Oceanogr 52:108–20.

    Article  CAS  Google Scholar 

  • Staehr P, Bade D, Van de Bogert M, Koch G, Williamson C, Hanson P, Cole J, Kratz T. 2010. Lake metabolism and the diel oxygen technique: State of the science. Limnol Oceanogr Methods 8:628–44. http://72.48.224.78/lomethods/free/2010/0628.pdf. Accessed 7 May 2014

  • Stallard R. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob Biogeochem Cycles 12:231–57. doi:10.1029/98GB00741/full.

    Article  CAS  Google Scholar 

  • Stets EG, Striegl RG, Aiken GR, Rosenberry DO, Winter TC. 2009. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J Geophys Res 114:G01008. doi:10.1029/2008JG000783.

    Google Scholar 

  • Striegl RG, Kortelainen P, Chanton JP, Wickland KP, Bugna GC, Rantakari M. 2001. Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt. Limnol Oceanogr 46:941–5. http://www.aslo.org/lo/toc/vol_46/issue_4/0941.html

  • Taipale SJ, Brett MT, Hahn MW, Martin-Creuzburg D, Yeung S, Hiltunen M, Strandberg U, Kankaala P. 2014. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology 95:563–76. http://www.ncbi.nlm.nih.gov/pubmed/24669748

  • Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. J North Am Benthol Soc 29:118–46. doi:10.1899/08-170.1.

    Article  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314. http://cat.inist.fr/?aModele=afficheN&amp;cpsidt=22279829. Accessed 12 June 2013

  • Vachon D, Prairie YT, Cole JJ. 2010. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55:1723–32. http://www.aslo.org/lo/toc/vol_55/issue_4/1723.html. Accessed 20 Feb 2014

  • Van De Bogert MC, Carpenter SR, Cole JJ, Pace ML. 2007. Assessing pelagic and benthic metabolism using free water measurements. Limnol Oceanogr Methods 5:145–55.

    Article  Google Scholar 

  • Van de Bogert MC, Bade DL, Carpenter SR, Cole JJ, Pace ML, Hanson PC, Langman OC. 2012. Spatial heterogeneity strongly affects estimates of ecosystem metabolism in two north temperate lakes. Limnol Oceanogr 57:1689–700. http://www.aslo.org/lo/toc/vol_57/issue_6/1689.html. Accessed 14 Feb 2013

  • Vollenweider R. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem del Inst di Idrobiol 33:53–83.

    CAS  Google Scholar 

  • Weathers KC, Lovett GM. 1998. Acid deposition research and ecosystem science: synergetic successes. In: Pace ML, Groffman P, Eds. Successes, limitations, and frontiers in ecosystem science. New York: Springer. pp 195–219.

  • Wetzel RG. 2001. Limnology: lake and river ecosystems. 2nd edn. San Diego: Academic Press.

    Google Scholar 

  • Wilkinson GM, Carpenter SR, Cole JJ, Pace ML, Yang C. 2013a. Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshw Biol 58:2037–49. doi:10.1111/fwb.12189.

    Article  Google Scholar 

  • Wilkinson GM, Pace ML, Cole JJ. 2013 b. Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochem Cycles 27:n/a–n/a. doi:10.1029/2012GB004453.

  • Wilkinson GM, Carpenter SR, Cole JJ, Pace ML. 2014. Use of deep autochthonous resources by zooplankton: results of a metalimentic addition of 13C to a small lake. Limnol Oceanogr 59:986–96.

    Article  CAS  Google Scholar 

  • Winslow LA, Read JS, Hanson PC, Stanley EH. 2014. Lake shoreline in the contiguous United States: quantity, distribution and sensitivity to observation resolution. Freshwater Biol 59:213–23. doi:10.1111/fwb.12258.

  • Winter TC, Likens G. 2009. Mirror lake: interactions among air, land and water. Berkeley: University of California Press.

    Google Scholar 

  • Yang H, Xing Y, Xie P, Ni L, Rong K. 2008. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance. Environ Pollut 151:559–68. http://www.ncbi.nlm.nih.gov/pubmed/17664033. Accessed 29 April 2014

Download references

Acknowledgements

This work was supported by the following Grants from the National Science Foundation: DEB-0917696, IIS-1344272, DEB-1256119, and the NTL-LTER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Hanson.

Additional information

Author contributions

PCH, MLP, SRC, JJC, and EHS conceived of the review and wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, P.C., Pace, M.L., Carpenter, S.R. et al. Integrating Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of Lakes. Ecosystems 18, 363–375 (2015). https://doi.org/10.1007/s10021-014-9826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-014-9826-9

Keywords

Navigation