Skip to main content

Advertisement

Log in

River Discharge Mediates Extent of Phytoplankton and Harmful Algal Bloom Habitat in the Columbia River Estuary (USA) During North Pacific Marine Heat Waves

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Marine heat waves (MHWs) have been associated with extensive harmful algal blooms (HABs) in the northeast Pacific Ocean, but the degree to which these large-scale oceanographic events are mirrored in nearshore environments has not been well established. We compared phytoplankton assemblages in the Lower Columbia River Estuary (LCRE) during two Pacific MHWs that took place in 2015 and 2019, with observations from 2017, a year with no MHW. These data were paired with environmental data from the summers of 2015–2019 to characterize differences in estuarine conditions during MHWs that promote phytoplankton assemblage transitions and identify HAB-conducive conditions. Bloom densities of HAB taxa, Pseudo-nitzschia spp. (4.16 × 106 cells L−1) and Gymnodinium catenatum (5.66 × 106 cells L−1), were noted in the estuary during 2015 and 2019, respectively, 2 years where Pacific MHWs occurred during the summer months. These blooms coincided with estuary temperatures that were 1–2 ℃ above and river discharge volumes 46–48% lower than decadal daily averages. We identified patterns in the densities of several algal taxa associated with MHW-mediated low discharge in the LCRE, such as declines in tychopelagic diatoms and increasing abundance of pelagic marine taxa. We conclude that low river discharge, through extension of saline habitat area and longer residence times, likely contributed to the development of the observed marine HABs in the estuary. MHWs and associated declines in discharge are projected to become more common in the Pacific Northwest with climate change, which may alter late summer phytoplankton assemblages in the LCRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amaya, Dillon J., Arthur J. Miller, Shang-Ping. Xie, and Yu. Kosaka. 2020. Physical drivers of the summer 2019 North Pacific marine heatwave. Nature Communications 11 (1): 1903. https://doi.org/10.1038/s41467-020-15820-w.

    Article  CAS  Google Scholar 

  • Ayache, Nour, Fabienne Hervé, Véronique. Martin-Jézéquel, Zouher Amzil, and Amandine M. N. Caruana. 2019. Influence of sudden salinity variation on the physiology and domoic acid production by two strains of Pseudo-nitzschia australis. Journal of Phycology 55 (1): 186–195. https://doi.org/10.1111/jpy.12801.

    Article  CAS  Google Scholar 

  • Band-Schmidt, C.J., L. Morquecho, C.H. Lechuga-Devéze, and D.M. Anderson. 2004. Effects of growth medium, temperature, salinity and seawater source on the growth of Gymnodinium catenatum (Dinophyceae) from Bahía Concepción, Gulf of California, Mexico. Journal of Plankton Research 26 (12): 1459–1470. https://doi.org/10.1093/plankt/fbh133.

    Article  Google Scholar 

  • Baptista, António M., Charles Seaton, Michael P. Wilkin, Sarah F. Riseman, Joseph A. Needoba, David Maier, Paul J. Turner, et al. 2015. Infrastructure for collaborative science and societal applications in the Columbia River Estuary. Frontiers of Earth Science 9 (4): 659–682. https://doi.org/10.1007/s11707-015-0540-5.

    Article  Google Scholar 

  • Berdalet, Elisa, Lora E. Fleming, Richard Gowen, Keith Davidson, Philipp Hess, Lorraine C. Backer, Stephanie K. Moore, Porter Hoagland, and Henrik Enevoldsen. 2016. Marine harmful algal blooms, human health and wellbeing: Challenges and opportunities in the 21st century. Journal of the Marine Biological Association of the United Kingdom 96 (1): 61–91. https://doi.org/10.1017/S0025315415001733.

    Article  Google Scholar 

  • Blackburn, Susan I., Gustaaf M. Hallegraeff, and Christopher J. Bolch. 1989. Vegetative reproduction and sexual life cycle of the toxic dinoflagellate Gymnodinium catenatum from Tasmania, Australia. Journal of Phycology 25 (3): 577–590. https://doi.org/10.1111/j.1529-8817.1989.tb00264.x.

    Article  Google Scholar 

  • Bond, Nicholas A., Meghan F. Cronin, Howard Freeland, and Nathan Mantua. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters 42 (9): 3414–3420. https://doi.org/10.1002/2015GL063306.

    Article  Google Scholar 

  • Boniface O. Fosu, S.-Y. Simon Wang, and Jin-Ho Yoon. 2016. Explaining extreme events of 2015 from a climate perspective. The 2014/15 snowpack drought in Washington State and its climate forcing.

  • Brodeur, Richard D., Toby D. Auth, and Anthony Jason Phillips. 2019. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Frontiers in Marine Science 6https://doi.org/10.3389/fmars.2019.00212.

  • Bruland, Kenneth W., Maeve C. Lohan, Ana M. Aguilar‐Islas, Geoffrey J. Smith, Bettina Sohst, and Antonio Baptista. 2008. Factors influencing the chemistry of the near‐field Columbia River plume: nitrate, silicic acid, dissolved Fe, and dissolved Mn. Journal of Geophysical Research: Oceans113(C2).

  • Cayan, Daniel R. 1996. Interannual climate variability and snowpack in the Western United States. Journal of Climate 9 (5): 928–948. https://doi.org/10.1175/1520-0442(1996)009%3c0928:ICVASI%3e2.0.CO;2.

    Article  Google Scholar 

  • Chawla, Arun, David A. Jay, António M. Baptista, Michael Wilkin, and Charles Seaton. 2008. Seasonal variability and estuary–shelf interactions in circulation dynamics of a River-Dominated Estuary. Estuaries and Coasts 31 (2): 269–288. https://doi.org/10.1007/s12237-007-9022-7.

    Article  Google Scholar 

  • Clark, Martyn P., Mark C. Serreze, and Greg J. McCabe. 2001. Historical effects of El Nino and La Nina events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River Basins. Water Resources Research 37 (3): 741–757. https://doi.org/10.1029/2000WR900305.

    Article  Google Scholar 

  • Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18 (1): 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.

    Article  Google Scholar 

  • Cloern, James E., Tara S. Schraga, and Cary Burns Lopez. 2005. Heat wave brings an unprecedented red tide to San Francisco Bay. Eos, Transactions American Geophysical Union 86 (7): 66–66. https://doi.org/10.1029/2005EO070003.

    Article  Google Scholar 

  • Cochlan, William P., Julian Herndon, and Raphael M. Kudela. 2008. Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae). Harmful Algae, HABs and Eutrophication 8 (1): 111–118. https://doi.org/10.1016/j.hal.2008.08.008.

    Article  CAS  Google Scholar 

  • Columbia River DART, Columbia Basin Research, and University of Washington. 2021. Pacific ocean coastal upwelling indices. 2021. http://www.cbr.washington.edu/dart/query/upwell_daily.

  • Costa, Pedro Reis, Maria João Botelho, and Kathi A. Lefebvre. 2010. Characterization of paralytic shellfish toxins in seawater and sardines (Sardina Pilchardus) during blooms of Gymnodinium catenatum. Hydrobiologia 655 (1): 89–97. https://doi.org/10.1007/s10750-010-0406-5.

    Article  CAS  Google Scholar 

  • Du, Xiuning, William Peterson, Jennifer Fisher, Matt Hunter, and Jay Peterson. 2016. Initiation and development of a toxic and persistent Pseudo-nitzschia bloom off the Oregon coast in spring/summer 2015. PLoS ONE 11 (10): e0163977. https://doi.org/10.1371/journal.pone.0163977.

    Article  CAS  Google Scholar 

  • Dyson, Karen, and Daniel D. Huppert. 2010. Regional economic impacts of Razor Clam Beach closures due to harmful algal blooms (HABs) on the Pacific Coast of Washington. Harmful Algae 9 (3): 264–271. https://doi.org/10.1016/j.hal.2009.11.003.

    Article  Google Scholar 

  • Ellis, Nick, Stephen J. Smith, and C. Roland Pitcher. 2012. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93 (1): 156–168. https://doi.org/10.1890/11-0252.1.

    Article  Google Scholar 

  • Federal Columbia River Power System. “The Columbia River System Inside Story.” 2001. Bonneville Power Administration, U.S. Bureau of Reclamation, U.S. Army Corps of Engineers. https://www.bpa.gov/p/Generation/Hydro/hydro/columbia_river_inside_story.pdf.

  • Frame, E.R., and Lessard, E.J. 2009. Does the Columbia River plume influence phytoplankton community structure along the Washington and Oregon coasts? Journal of Geophysical Research: Oceans 114(C2).

  • Gao, Guang, Xin Zhao, Meijia Jiang, and Lin Gao. 2021. Impacts of marine heatwaves on algal structure and carbon sequestration in conjunction with ocean warming and acidification. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.758651.

  • Haertel, L., and C. Osterberg. 1967. Ecology of zooplankton, benthos and fishes in the Columbia River estuary. Ecology 48 (3): 459–472.

    Article  Google Scholar 

  • Hallegraeff, G.M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32 (2): 79–99. https://doi.org/10.2216/i0031-8884-32-2-79.1.

    Article  Google Scholar 

  • Hallegraeff, Gustaaf M. 2010. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge. Journal of Phycology 46 (2): 220–235. https://doi.org/10.1111/j.1529-8817.2010.00815.x.

    Article  CAS  Google Scholar 

  • Hallegraeff, G.M., S.I. Blackburn, M.A. Doblin, and C.J.S. Bolch. 2012. Global toxicology, ecophysiology and population relationships of the chainforming PST dinoflagellate Gymnodinium catenatum. Harmful Algae, Harmful Algae-the Requirement for Species-Specific Information 14 (February): 130–143. https://doi.org/10.1016/j.hal.2011.10.018.

    Article  CAS  Google Scholar 

  • Hamlet, Alan F., and Dennis P. Lettenmaier. 1999. Effects of climate change on hydrology and water resources in the Columbia River Basin1. JAWRA Journal of the American Water Resources Association 35 (6): 1597–1623. https://doi.org/10.1111/j.1752-1688.1999.tb04240.x.

    Article  Google Scholar 

  • Heady, Walter N., Kevin Corliss O'Connor, Jennifer Kassakian, Kate Doiron, Charles Endris, Daniel Hudgens, Ross P. Clark, Jena Carter, and Mary Gayle Gleason. 2014. An inventory and classification of U.S. West Coast Estuaries. Arlington, VA: The Nature Conservancy. http://www.pacificfishhabitat.org/wp-content/uploads/2017/09/wc_estuaryinventory_final_report_jan15_2015.pdf.

  • Herfort, Lydie, Tawnya D. Peterson, Victoria Campbell, Sheedra Futrell, and Peter Zuber. 2011. Myrionecta rubra (Mesodinium rubrum) bloom initiation in the Columbia River Estuary. Estuarine, Coastal and Shelf Science 95 (4): 440–446. https://doi.org/10.1016/j.ecss.2011.10.015.

    Article  Google Scholar 

  • Hickey, B., S. Geier, N. Kachel, and A. MacFadyen. 2005. A bi-directional river plume: The Columbia in summer. Continental Shelf Research 25 (14): 1631–1656. https://doi.org/10.1016/j.csr.2005.04.010.

    Article  Google Scholar 

  • Hobday, Alistair, Eric Oliver, Alex Sen Gupta, Jessica Benthuysen, Michael Burrows, Markus Donat, Neil Holbrook, Pippa Moore, Mads Thomsen, Thomas Wernberg, Dan Smale. 2018. Categorizing and naming marine heatwaves.” Oceanography 31, no. 2. https://doi.org/10.5670/oceanog.2018.205.

  • Jay, D.A., and J.D. Smith. 1990. Residual circulation in shallow estuaries: 1. Highly stratified, narrow estuaries. Journal of Geophysical Research: Oceans 95 (C1): 711–731.

    Article  Google Scholar 

  • Jeong, Hae Jin, Yeong Du Yoo, Jae Seong Kim, Kyeong Ah Seong, Nam Seon Kang, and Tae Hoon Kim. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45 (2): 65–91. https://doi.org/10.1007/s12601-010-0007-2.

    Article  CAS  Google Scholar 

  • Kärnä, Tuomas, and António M. Baptista. 2016. Water age in the Columbia River Estuary. Estuarine, Coastal and Shelf Science 183 (December): 249–259. https://doi.org/10.1016/j.ecss.2016.09.001.

    Article  Google Scholar 

  • Kudela, Raphael M., William P. Cochlan, Tawnya D. Peterson, and Charles G. Trick. 2006. Impacts on phytoplankton biomass and productivity in the Pacific Northwest during the warm ocean conditions of 2005. Geophysical Research Letters 33, no. 22. https://doi.org/10.1029/2006GL026772.

  • Lara-Lara, J. Ruben, Bruce E. Frey, and F. Lawrence Small. 1990. Primary production in the Columbia River Estuary I. Spatial and temporal variability of properties! Pacific Science 44: 21.

  • Lefebvre, K., M. Silver, S. Coale, and R. Tjeerdema. 2002. Domoic acid in planktivorous fish in relation to toxic Pseudo-nitzschia cell densities. Marine Biology 140 (3): 625–631. https://doi.org/10.1007/s00227-001-0713-5.

    Article  CAS  Google Scholar 

  • Lefebvre, Kathi A., Brian D. Bill, Aleta Erickson, Keri A. Baugh, Lohna O’Rourke, Pedro R. Costa, Shelly Nance, and Vera L. Trainer. 2008. Characterization of intracellular and extracellular saxitoxin levels in both field and cultured Alexandrium spp. samples from Sequim Bay, Washington. Marine Drugs 6 (2): 103–16. https://doi.org/10.3390/md6020103.

  • Lewitus, Alan J., Rita A. Horner, David A. Caron, Ernesto Garcia-Mendoza, Barbara M. Hickey, Matthew Hunter, Daniel D. Huppert, et al. 2012. Harmful algal blooms along the North American West Coast Region: History, trends, causes, and impacts. Harmful Algae 19 (September): 133–159. https://doi.org/10.1016/j.hal.2012.06.009.

    Article  Google Scholar 

  • Lorenzo, Di., and Emanuele, and Nathan Mantua. 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change 6 (11): 1042–1047. https://doi.org/10.1038/nclimate3082.

    Article  Google Scholar 

  • McCabe, Ryan M., Barbara M. Hickey, Raphael M. Kudela, Kathi A. Lefebvre, Nicolaus G. Adams, Brian D. Bill, Frances M. D. Gulland, Richard E. Thomson, William P. Cochlan, and Vera L. Trainer. 2016. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Research Letters 43 (19): 10366–10376. https://doi.org/10.1002/2016GL070023.

    Article  Google Scholar 

  • Mote, Philip W. 2006. Climate-driven variability and trends in Mountain Snowpack in Western North America. Journal of Climate 19 (23): 6209–6220. https://doi.org/10.1175/JCLI3971.1.

    Article  Google Scholar 

  • National Centers for and Coastal Ocean Science. 2015. West coast harmful algal bloom draws attention of congress. 2015. https://coastalscience.noaa.gov/news/west-coast-harmful-algal-bloom-draws-attention-congress/.

  • Oksanen, J. 2011. Multivariate analysis of ecological communities in R: Vegan tutorial. R Package Version 1 (7): 1–43.

    Google Scholar 

  • Oregon Department of Agriculture. 2021. Mussel and clam biotoxin lab results. 8.

  • ORHAB. 2021. PNW hab bulletin. UW Departments Web Server. https://depts.washington.edu/orhab/pnw-hab-bulletin/.

  • Piatt, John F., Julia K. Parrish, Heather M. Renner, Sarah K. Schoen, Timothy T. Jones, Mayumi L. Arimitsu, Kathy J. Kuletz, et al. 2020. Extreme mortality and reproductive failure of common murres resulting from the Northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15 (1): e0226087. https://doi.org/10.1371/journal.pone.0226087.

    Article  CAS  Google Scholar 

  • Poe, Melissa R., Phillip S. Levin, Nick Tolimieri, and Karma Norman. 2015. Subsistence fishing in a 21st century capitalist society: From commodity to gift. Ecological Economics 116 (August): 241–250. https://doi.org/10.1016/j.ecolecon.2015.05.003.

    Article  Google Scholar 

  • Ritzman, Jerilyn, Amy Brodbeck, Sara Brostrom, Scott McGrew, Stacia Dreyer, Terrie Klinger, and Stephanie K. Moore. 2018. Economic and sociocultural impacts of fisheries closures in two fishing-dependent communities following the massive 2015 U.S. West Coast Harmful Algal Bloom. Harmful Algae 80 (December): 35–45. https://doi.org/10.1016/j.hal.2018.09.002.

    Article  Google Scholar 

  • Roberts, Shane D., Paul D. Van Ruth, Clinton Wilkinson, Stella S. Bastianello, and Matthew S. Bansemer. 2019. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00610.

  • Rogers-Bennett, L., and C.A. Catton. 2019. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Scientific Reports 9 (1): 15050. https://doi.org/10.1038/s41598-019-51114-y.

    Article  CAS  Google Scholar 

  • Rollwagen-Bollens, Gretchen, Stephen Bollens, Eric Dexter, and Jeffery Cordell. 2020. Biotic vs. abiotic forcing on plankton assemblages varies with season and size class in a large temperate estuary. Journal of Plankton Research 42 (2): 221–237. https://doi.org/10.1093/plankt/fbaa010.

    Article  CAS  Google Scholar 

  • Rose, V.G., Rollwagen-Bollens, Sm. Bollens, and J. Zimmerman. 2021. Seasonal and interannual variation in Lower Columbia River Phytoplankton (2005–2018): Environmental variability and a decline in large bloom-forming diatoms. Aquatic Microbial Ecology 87: 29–46. https://doi.org/10.3354/ame01967.

  • Simenstad, Charles, Lawrence Small, and David McIntire. 1990. Consumption processes and food web structure in the Columbia River Estuary. Progress in Oceanography 25 (1–4): 271–297. https://doi.org/10.1016/0079-6611(90)90010-Y.

    Article  Google Scholar 

  • Simenstad, Charles A, David A Jay, C. David McIntire, Willa Nehlson, Christopher R Sherwood, and Lawrence Small. 1984. The dynamics of the Columbia River estuarine ecosystem volume II. Columbia River Estuary Data Development Program.

  • Simpson, E.H. 1949. Measurement of diversity. Nature 163 (4148): 688–688. https://doi.org/10.1038/163688a0.

    Article  Google Scholar 

  • Simpson, Gavin L. 2018. Modelling palaeoecological time series using generalized additive models. https://doi.org/10.1101/322248.

  • Small, Lawrence F., C. David McIntire, Keith B. MacDonald, J. Ruben Lara-Lara, Bruce E. Frey, Michael C. Amspoker, and Ted Winfield. 1990. Primary production, plant and detrital biomass, and particle transport in the Columbia River Estuary. Progress in Oceanography 25 (1): 175–210. https://doi.org/10.1016/0079-6611(90)90007-O.

    Article  Google Scholar 

  • Stevens, A.W., Gelfenbaum, G., MacMahan, J., Reniers, A.J.H.M., Elias, E.P., Sherwood, C.R., and Carlson, E.M. 2017. Oceanographic measurements and hydrodynamic modeling of the mouth of the Columbia River, Oregon and Washington, 2013: U.S. Geological Survey data release. https://doi.org/10.5066/F7NG4NS1.

  • Tassone, Spencer J., Alice F. Besterman, Cal D. Buelo, Jonathan A. Walter, and Michael L. Pace. 2022. Co-occurrence of aquatic heatwaves with atmospheric heatwaves, low dissolved oxygen, and low PH events in estuarine ecosystems. Estuaries and Coasts 45 (3): 707–720. https://doi.org/10.1007/s12237-021-01009-x.

    Article  CAS  Google Scholar 

  • Thessen, Anne E., Quay Dortch, Michael L. Parsons, and Wendy Morrison. 2005. Effect of salinity on Pseudo-nitzschia species (Bacillariophyceae) growth and distribution. Journal of Phycology 41 (1): 21–29. https://doi.org/10.1111/j.1529-8817.2005.04077.x.

    Article  Google Scholar 

  • Tohver, Ingrid M., Alan F. Hamlet, and Se-Yeun. Lee. 2014. Impacts of 21st-century climate change on hydrologic extremes in the Pacific Northwest Region of North America. JAWRA Journal of the American Water Resources Association 50 (6): 1461–1476. https://doi.org/10.1111/jawr.12199.

    Article  Google Scholar 

  • Trainer, Vera L., and Marc Suddleson. 2005. Monitoring approaches for early warning of domoic acid events in Washington State. Oceanography 18 (2): 228–237. https://doi.org/10.5670/oceanog.2005.56.

    Article  Google Scholar 

  • United States Geological Survey, National Streamflow Information Program. 2022. USGS 14246900 Columbia River at port Westward, near Quincy, or. 2021. https://waterdata.usgs.gov/nwis/uv?site_no=14246900.

  • Van Dolah, F.M. 2000. Marine algal toxins: Origins, health effects, and their increased occurrence. Environmental Health Perspectives 108 (suppl 1): 133–141. https://doi.org/10.1289/ehp.00108s1133.

    Article  Google Scholar 

  • von Biela, Vr., Ml. Arimitsu, B. Jf Piatt, Jl Schoen Heflin, S.K. Trowbridge, and Cm. Clawson. 2019. Extreme reduction in nutritional value of a key forage fish during the pacific marine heatwave of 2014–2016. Marine Ecology Progress Series 613 (March): 171–182. https://doi.org/10.3354/meps12891.

    Article  Google Scholar 

  • Wetz, Michael S., and David W. Yoskowitz. 2013. An ‘Extreme’ future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Marine Pollution Bulletin 69 (1): 7–18. https://doi.org/10.1016/j.marpolbul.2013.01.020.

    Article  CAS  Google Scholar 

  • Wood, Simon N. 2017. Generalized additive models: an introduction with R. Second edition. Chapman & Hall/CRC Texts in Statistical Science. Boca Raton: CRC Press/Taylor & Francis Group.

  • Yamamoto, T., S.J. Oh, and Y. Kataoka. 2004. Growth and uptake kinetics for nitrate, ammonium and phosphate by the toxic dinoflagellate Gymnodinium catenatum isolated from Hiroshima Bay, Japan. Fisheries Science 70 (1): 108–115.

    Article  CAS  Google Scholar 

  • Zhu, Zhi, Qu. Pingping, Fu. Feixue, Nancy Tennenbaum, Avery O. Tatters, and David A. Hutchins. 2017. Understanding the Blob Bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae 67 (July): 36–43. https://doi.org/10.1016/j.hal.2017.06.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank L. Cook for his assistance with field collections and light microscopic identification, and S. Dyer and A. Bryn for their help with field work. In addition, we would like to thank the captain and crew of the R/V Oceanus for assistance in sample collection. We also thank CMOP, the United States Geological Survey (USGS), and Columbia River Data Access in Real Time (DART) for the use of publicly available data.

Funding

This work was funded by a National Science Foundation Graduate Research Fellowship to TND, the Lower Columbia River Estuary Partnership’s Ecosystem Monitoring Program [supported by Bonneville Power Administration (BPA; 2003-007-00)], and the Center for Coastal Margin Observation and Prediction (CMOP; NSF-OCE 0424602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taylor N. Dodrill.

Additional information

Communicated by Hongbin Liu

Supplementary Information

Below is the link to the electronic supplementary material.

12237_2022_1129_MOESM1_ESM.jpg

Supplementary file1 S1 Daily discharge anomaly for 2010 – 2019 compared to daily decadal average. Discharge data from USGS Quincy Station. Red bars indicate a positive discharge anomaly, blue bars indicate a negative anomaly (JPG 2555 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodrill, T.N., Pan, Y. & Peterson, T.D. River Discharge Mediates Extent of Phytoplankton and Harmful Algal Bloom Habitat in the Columbia River Estuary (USA) During North Pacific Marine Heat Waves. Estuaries and Coasts 46, 166–181 (2023). https://doi.org/10.1007/s12237-022-01129-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-022-01129-y

Keywords

Navigation