Skip to main content

Advertisement

Log in

Co-occurrence of Aquatic Heatwaves with Atmospheric Heatwaves, Low Dissolved Oxygen, and Low pH Events in Estuarine Ecosystems

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Heatwaves are increasing in frequency, duration, and intensity in the atmosphere and marine environment with rapid changes to ecosystems occurring as a result. However, heatwaves in estuarine ecosystems have received little attention despite the effects of high temperatures on biogeochemical cycling and fisheries and the susceptibility of estuaries to heatwaves given their low volume. Likewise, estuarine heatwave co-occurrence with extremes in water quality variables such as dissolved oxygen (DO) and pH have not been considered and would represent periods of enhanced stress. This study analyzed 1440 station years of high-frequency data from the National Estuarine Research Reserve System (NERRS) to assess trends in the frequency, duration, and severity of estuarine heatwaves and their co-occurrences with atmospheric heatwaves, low DO, and low pH events between 1996 and 2019. Estuaries are warming faster than the open and coastal ocean, with an estuarine heatwave mean annual occurrence of 2 ± 2 events, ranging up to 10 events per year, and lasting up to 44 days (mean duration = 8 days). Estuarine heatwaves co-occur with an atmospheric heatwave 6–71% of the time, depending on location, with an average estuarine heatwave lag range of 0–2 days. Similarly, low DO or low pH events co-occur with an estuarine heatwave 2–45% and 0–18% of the time, respectively, with an average low DO lag of 3 ± 2 days and low pH lag of 4 ± 2 days. Triple co-occurrence of an estuarine heatwave with a low DO and low pH event was rare, ranging between 0 and 7% of all estuarine heatwaves. Amongst all the stations, there have been significant reductions in the frequency, intensity, duration, and rate of low DO event onset and decline over time. Likewise, low pH events have decreased in frequency, duration, and intensity over the study period, driven in part by reductions in all severity classifications of low pH events. This study provides the first baseline assessment of estuarine heatwave events and their co-occurrence with deleterious water quality conditions for a large set of estuaries distributed throughout the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoki, L.R., K.J. McGlathery, P.L. Wiberg, M.P.J. Oreska, A.C. Berger, P. Berg, and R.J. Orth. 2021. Seagrass recovery following marine heat wave influences sediment carbon stocks. Frontiers in Marine Science 7: 1170.

    Google Scholar 

  • Baird, D., R.R. Christian, C.H. Peterson, and G.A. Johnson. 2004. Consequences of hypoxia on estuarine ecosystem function: Energy diversion from consumers to microbes. Ecological Applications 14 (3): 805–822.

    Google Scholar 

  • Barichivich, J., K.R. Briffa, T.J. Osborn, T.M. Melvin, and J. Caesar. 2012. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Global Biogeochemical Cycles 26 (4): GB4015.

  • Bartosiewicz, M., I. Laurion, F. Clayer, and R. Maranger. 2016. Heat-wave effects on oxygen nutrients and phytoplankton can alter global warming potential of gases emitted from a small shallow lake. Environmental Science & Technology 50 (12): 6267–6275.

    CAS  Google Scholar 

  • Beck, M.W., J.D. Hagy III., and M.C. Murrell. 2015. Improving estimates of ecosystem metabolism by reducing effects of tidal advection on dissolved oxygen time series. Limnology and Oceanography: Methods 13 (12): 731–745.

    Google Scholar 

  • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (methodological) 57 (1): 289–300.

    Google Scholar 

  • Borges, A.V., W. Champenois, N. Gypens, B. Delille, and J. Harlay. 2016. Massive marine methane emissions from near-shore shallow coastal areas. Scientific Reports 6 (1): 27908.

    CAS  Google Scholar 

  • Burrows, M.T., D.S. Schoeman, L.B. Buckley, P. Moore, E.S. Poloczanska, K.M. Brander, C. Brown, J.F. Bruno, C.M. Duarte, B.S. Halpern, J. Holding, C.V. Kappel, W. Kiessling, M.I. O’Connor, J.M. Pandolfi, C. Parmesan, F.B. Schwing, W.J. Sydeman, and A.J. Richardson. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334 (6056): 652–655.

    CAS  Google Scholar 

  • Caffrey, J.M. 2004. Factors controlling net ecosystem metabolism in U. S. Estuaries. Estuaries 27 (1): 90–101.

    CAS  Google Scholar 

  • Cai, W.J., X. Hu, W.J. Huang, M.C. Murrell, J.C. Lehrter, S.E. Lohrenz, W.C. Chou, W. Zhai, J.T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, and G.C. Gong. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience 4 (11): 766–770.

    CAS  Google Scholar 

  • Cairns, J. 1971. Thermal pollution: A cause for concern. Journal (water Pollution Control Federation) 43 (1): 55–66.

    Google Scholar 

  • Caissie, D. 2006. The thermal regime of rivers: A review. Freshwater Biology 51 (8): 1389–1406.

    Google Scholar 

  • Carslaw, D.C., and K. Ropkins. 2012. openair — an R package for air quality data analysis. Environmental Modelling & Software 27: 52–61.

    Google Scholar 

  • Chan, F., J.A. Barth, K.J. Kroeker, J. Lubchenco, and B.A. Menge. 2019. The dynamics and impact of ocean acidification and hypoxia. Oceanography 32 (3): 62–71.

    Google Scholar 

  • Collins, M., M. Sutherland, L. Bouwer, S.-M. Cheong, H.J.D. Combes, M.K. Roxy, I. Losada, K. McInnes, B. Ratter, E. Rivera-Arriaga, R.D. Susanto, D. Swingedouw, L. Tibig, P. Bakker, C.M. Eakin, K. Emanuel, M. Grose, M. Hemer, L. Jackson, A. Kääb, J. Kajtar, T. Knutson, C. Laufkötter, I. Noy, M. Payne, R. Ranasinghe, G. Sgubin, M.-L. Timmermans, A. Abdulla, M.H. González, and C. Turley. 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate: Extremes. Abrupt Changes and Managing Risks 6: 589–655.

    Google Scholar 

  • Ding, H., and A.J. Elmore. 2015. Spatio-temporal patterns in water surface temperature from Landsat time series data in the Chesapeake Bay, U.S.A. Remote Sensing of Environment 168: 335–345.

    Google Scholar 

  • Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1 (1): 169–192.

    Google Scholar 

  • Doney, S.C., M. Ruckelshaus, J. Emmett Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, N. Knowlton, J. Polovina, N.N. Rabalais, W.J. Sydeman, and L.D. Talley. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4 (1): 11–37.

    Google Scholar 

  • Doney, S.C., D.S. Busch, S.R. Cooley, and K.J. Kroeker. 2020. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annual Review of Environment and Resources 45 (1): 83–112.

    Google Scholar 

  • Duarte, C.M., I.E. Hendriks, T.S. Moore, Y.S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J.A. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36 (2): 221–236.

    CAS  Google Scholar 

  • Easterling, D.R., G.A. Meehl, C. Parmesan, S.A. Changnon, T.R. Karl, and L.O. Mearns. 2000. Climate extremes: Observations, modeling, and impacts. Science 289 (5487): 2068–2074.

    CAS  Google Scholar 

  • Forbes, A.M.G. 1988. Fourier transform filtering: A cautionary note. Journal of Geophysical Research: Oceans 93 (C6): 6958–6962.

    Google Scholar 

  • Frölicher, T.L., E.M. Fischer, and N. Gruber. 2018. Marine heatwaves under global warming. Nature 560 (7718): 360–364.

    Google Scholar 

  • Garrabou, J., R. Coma, N. Bensoussan, M. Bally, P. Chevaldonné, M. Cigliano, D. Diaz, J.G. Harmelin, M.C. Gambi, D.K. Kersting, J.B. Ledoux, C. Lejeusne, C. Linares, C. Marschal, T. Pérez, M. Ribes, J.C. Romano, E. Serrano, N. Teixido, O. Torrents, M. Zabala, F. Zuberer, and C. Cerrano. 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biology 15 (5): 1090–1103.

    Google Scholar 

  • Gobler, C.J., and H. Baumann. 2016. Hypoxia and acidification in ocean ecosystems: Coupled dynamics and effects on marine life. Biology Letters 12 (5): 20150976.

    Google Scholar 

  • Gruber, N. 2011. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences 369 (1943): 1980–1996.

    CAS  Google Scholar 

  • Hirsch, R.M., J.R. Slack, and R.A. Smith. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18 (1): 107–121.

    Google Scholar 

  • Hobday, A.J., L.V. Alexander, S.E. Perkins, D.A. Smale, S.C. Straub, E.C.J. Oliver, J.A. Benthuysen, M.T. Burrows, M.G. Donat, M. Feng, N.J. Holbrook, P.J. Moore, H.A. Scannell, A. Sen Gupta, and T. Wernberg. 2016. A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141: 227–238.

    Google Scholar 

  • Hobday, A., E. Oliver, A. Sen Gupta, J. Benthuysen, M. Burrows, M. Donat, N. Holbrook, P. Moore, M. Thomsen, T. Wernberg, and D. Smale. 2018. Categorizing and naming marine heatwaves. Oceanography 31 (2): 162–173.

    Google Scholar 

  • Hoegh-Guldberg, O., R. Cai, E.S. Poloczanska, P.G. Brewer, S. Sundby, K. Hilmi, V.J. Fabry, and S. Jung. 2014. The ocean: Climate change 2014: Impacts, adaptation, and vulnerability. Part b: Regional Aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 30: 1655–1731.

    Google Scholar 

  • Jentsch, A., J. Kreyling, and C. Beierkuhnlein. 2007. A new generation of climate-change experiments: Events, not trends. Frontiers in Ecology and the Environment 5 (7): 365–374.

    Google Scholar 

  • Kaushal, S.S., G.E. Likens, N.A. Jaworski, M.L. Pace, A.M. Sides, D. Seekell, K.T. Belt, D.H. Secor, and R.L. Wingate. 2010. Rising stream and river temperatures in the United States. Frontiers in Ecology and the Environment 8 (9): 461–466.

    Google Scholar 

  • Kaushal, S.S., G.E. Likens, R.M. Utz, M.L. Pace, M. Grese, and M. Yepsen. 2013. Increased river alkalinization in the Eastern U.S. Environmental Science & Technology 47 (18): 10302–10311.

    CAS  Google Scholar 

  • Kendrick, G.A., R.J. Nowicki, Y.S. Olsen, S. Strydom, M.W. Fraser, E.A. Sinclair, J. Statton, R.K. Hovey, J.A. Thomson, D.A. Burkholder, K.M. McMahon, K. Kilminster, Y. Hetzel, J.W. Fourqurean, M.R. Heithaus, and R.J. Orth. 2019. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Frontiers in Marine Science 6: 455.

    Google Scholar 

  • Lau, N.C., and M.J. Nath. 2012. A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. Journal of Climate 25 (14): 4761–4784.

    Google Scholar 

  • Lima, F.P., and D.S. Wethey. 2012. Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nature Communications 3 (1): 704.

    Google Scholar 

  • Llansó, R.J. 1992. Effects of hypoxia on estuarine benthos: The lower Rappahannock River (Chesapeake Bay), a case study. Estuarine, Coastal and Shelf Science 35 (5): 491–515.

    Google Scholar 

  • Madeira, D., L. Narciso, H.N. Cabral, and C. Vinagre. 2012. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. Journal of Sea Research 70: 32–41.

    Google Scholar 

  • Major, R.L., and J.L. Mighell. 1967. Influence of rocky reach dam and the temperature of the okanogan river on the upstream migration of sockeye salmon. Fisheries Bulletin 66: 131–147.

    Google Scholar 

  • Marbà, N., and C.M. Duarte. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology 16 (8): 2366–2375.

    Google Scholar 

  • Marotta, H., L. Pinho, C. Gudasz, D. Bastviken, L.J. Tranvik, and A. Enrich-Prast. 2014. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nature Climate Change 4 (6): 467–470.

    CAS  Google Scholar 

  • NOAA National Centers for Environmental Information. 2016. Meteorological versus astronomical seasons. https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons

  • NOAA National Estuarine Research Reserve System (NERRS). 2020. System-wide monitoring program. http://www.nerrsdata.org

  • Oliver, E.C.J., M.G. Donat, M.T. Burrows, P.J. Moore, D.A. Smale, L.V. Alexander, J.A. Benthuysen, M. Feng, A. Sen Gupta, A.J. Hobday, N.J. Holbrook, S.E. Perkins-Kirkpatrick, H.A. Scannell, S.C. Straub, and T. Wernberg. 2018. Longer and more frequent marine heatwaves over the past century. Nature Communications 9 (1): 1–12.

    CAS  Google Scholar 

  • Oliver, E.C.J., J.A. Benthuysen, S. Darmaraki, M.G. Donat, A.J. Hobday, N.J. Holbrook, R.W. Schlegel, and A. Sen Gupta. 2021. Marine heatwaves. Annual Review of Marine Science 13: 313–342.

    Google Scholar 

  • O’Reilly, C.M., S. Sharma, D.K. Gray, S.E. Hampton, J.S. Read, R.J. Rowley, P. Schneider, J.D. Lenters, P.B. McIntyre, B.M. Kraemer, G.A. Weyhenmeyer, D. Straile, B. Dong, R. Adrian, M.G. Allan, O. Anneville, L. Arvola, J. Austin, J.L. Bailey, J.S. Baron, J.D. Brookes, E. Eyto, M.T. Dokulil, D.P. Hamilton, K. Havens, A.L. Hetherington, S.N. Higgins, S. Hook, L.R. Izmest’eva, K.D. Joehnk, K. Kangur, P. Kasprzak, M. Kumagai, E. Kuusisto, G. Leshkevich, D.M. Livingstone, S. MacIntyre, L. May, J.M. Melack, D.C. Mueller-Navarra, M. Naumenko, P. Noges, T. Noges, R.P. North, P. Plisnier, A. Rigosi, A. Rimmer, M. Rogora, L.G. Rudstam, J.A. Rusak, N. Salmaso, N.R. Samal, D.E. Schindler, S.G. Schladow, M. Schmid, S.R. Schmidt, E. Silow, M.E. Soylu, K. Teubner, P. Verburg, A. Voutilainen, A. Watkinson, C.E. Williamson, and G. Zhang. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42 (24): 10773–10781.

  • Osland, M.J., N. Enwright, R.H. Day, and T.W. Doyle. 2013. Winter climate change and coastal wetland foundation species: Salt marshes vs. mangrove forests in the southeastern United States. Global Change Biology 19 (5): 1482–1494.

  • Perkins, S.E., and L.V. Alexander. 2013. On the measurement of heat waves. Journal of Climate 26 (13): 4500–4517.

    Google Scholar 

  • Piao, S., P. Ciais, P. Friedlingstein, P. Peylin, M. Reichstein, S. Luyssaert, H. Margolis, J. Fang, A. Barr, A. Chen, A. Grelle, D.Y. Hollinger, T. Laurila, A. Lindroth, A.D. Richardson, and T. Vesala. 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451 (7174): 49–52.

    CAS  Google Scholar 

  • Piatt, J.F., J.K. Parrish, H.M. Renner, S.K. Schoen, T.T. Jones, M.L. Arimitsu, K.J. Kuletz, B. Bodenstein, M. García-Reyes, R.S. Duerr, R.M. Corcoran, R.S.A. Kaler, G.J. McChesney, R.T. Golightly, H.A. Coletti, R.M. Suryan, H.K. Burgess, J. Lindsey, K. Lindquist, P.M. Warzybok, J. Jahncke, J. Roletto, and W.J. Sydeman. 2020. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PloS One 15 (1): e0226087.

  • R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Sanger, D.M., M.D. Arendt, Y. Chen, E.L. Wenner, A.F. Holland, D. Edwards, and J. Caffrey. 2002. A synthesis of water quality data: National Estuarine Research Reserve System-wide Monitoring Program (1995–2000). National Estuarine Research Reserve Technical Report Series 3. South Carolina Department of Natural Resources, Marine Resources Division Contribution No. 500. 135 p.

  • Scanes, E., P.R. Scanes, and P.M. Ross. 2020. Climate change rapidly warms and acidifies Australian estuaries. Nature Communications 11 (1): 1–11.

    Google Scholar 

  • Schär, C., P.L. Vidale, D. Lüthi, C. Frei, C. Häberli, M.A. Liniger, and C. Appenzeller. 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427 (6972): 332–336.

    Google Scholar 

  • Schlegel, R.W., and A.J. Smit. 2018. heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. Journal of Open Source Software 3 (27): 821.

    Google Scholar 

  • Schlegel, R.W., E.C.J. Oliver, A.J. Hobday, and A.J. Smit. 2019. Detecting marine heatwaves with sub-optimal data. Frontiers in Marine Science 6: 737.

    Google Scholar 

  • Smale, D.A. and T. Wernberg. 2013. Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B: Biological Sciences 280 (1754): 20122829. https://doi.org/10.1098/rspb.2012.2829

  • Sorte, C.J., I. Ibáñez, D.M. Blumenthal, N.A. Molinari, L.P. Miller, E.D. Grosholz, J.M. Diez, C.M. D’Antonio, J.D. Olden, S.J. Jones, and J.S. Dukes. 2013. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Letters 16 (2): 261–270. https://doi.org/10.1111/ele.12017.

    Article  Google Scholar 

  • Stenseth, N.C., and A. Mysterud. 2002. Climate, changing phenology, and other life history traits: Nonlinearity and match-mismatch to the environment. Proceedings of the National Academy of Sciences 99 (21): 13379–13381.

    CAS  Google Scholar 

  • Thomson, R.E., and W.J. Emery. 2014. Digital filters. In Data analysis methods in physical oceanography, 593–637. Waltham: Elsevier. https://doi.org/10.1016/B978-0-12-387782-6.00006-5

  • Tomaso, D.J., and R.G. Najjar. 2015. Long-term variations in the dissolved oxygen budget of an urbanized tidal river: The upper Delaware Estuary. Journal of Geophysical Research: Biogeosciences 120 (6): 1027–1045.

    CAS  Google Scholar 

  • Walters, R.A., and C. Heston. 1982. Removing tidal-period variations from time-series data using low-pass digital filters. Journal of Physical Oceanography 12 (1): 112–115.

    Google Scholar 

  • Webb, B.W., and F. Nobilis. 1995. Long term water temperature trends in Austrian rivers. Hydrological Sciences Journal 40 (1): 83–96.

    Google Scholar 

  • Wenner, E.L., A.F. Holland, M.D. Arendt, Y. Chen, D. Edwards, C. Miller, M. Meece, and J. Caffrey. 2001. A synthesis of water quality data from the National Estuarine Research Reserve System-wide monitoring program. Final Report to The Cooperative Institute for Coastal and Estuarine Environmental Technology NOAA Grant No.: NA97OR0209SC. South Carolina Department of Natural Resources, Marine Resources Division, Contribution No. 459.

  • Wernberg, T., S. Bennett, R.C. Babcock, T. de Bettignies, K. Cure, M. Depczynski, F. Dufois, J. Fromont, C.J. Fulton, R.K. Hovey, E.S. Harvey, T.H. Holmes, G.A. Kendrick, B. Radford, J. Santana-Garcon, B.J. Saunders, D.A. Smale, M.S. Thomsen, C.A. Tuckett, F. Tuya, M.A. Vanderklift, and S. Wilson. 2016. Climate-driven regime shift of a temperate marine ecosystem. Science 353 (6295): 169–172.

    CAS  Google Scholar 

  • Whitney, M.M., and P. Vlahos. 2021. Reducing hypoxia in an urban estuary despite climate warming. Environmental Science & Technology 55 (2): 941–951.

    CAS  Google Scholar 

  • Wilhelm, S., and R. Adrian. 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 53 (2): 226–237.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Patricia L. Wiberg for discussions on heatwave and Fourier transform analysis, Dr. Christopher Sherwood for discussions on Fourier transform analysis and code, and Dat Ha for early revisions, and helpful, positive feedback received by two anonymous reviewers. Associate Editor Dr. Arnoldo Valle-Levinson provided guidance and raised questions that improved our analysis and revision of the initial manuscript. We thank the NERRS staff for assistance and advice.

Funding

This work was supported by funding from the University of Virginia’s Environmental Resilience Institute and an NSF grant supporting the LTER-Virginia Coast Reserve project (DEB 1832221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer J. Tassone.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Arnoldo Valle-Levinson.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tassone, S.J., Besterman, A.F., Buelo, C.D. et al. Co-occurrence of Aquatic Heatwaves with Atmospheric Heatwaves, Low Dissolved Oxygen, and Low pH Events in Estuarine Ecosystems. Estuaries and Coasts 45, 707–720 (2022). https://doi.org/10.1007/s12237-021-01009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-01009-x

Keywords

Navigation