Skip to main content

Advertisement

Log in

Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Arsenic is a ubiquitous toxic metalloid, the concentration of which is beyond WHO safe drinking water standards in many areas of the world, owing to many natural and anthropogenic activities. Long-term exposure to arsenic proves lethal for plants, humans, animals, and even microbial communities in the environment. Various sustainable strategies have been developed to mitigate the harmful effects of arsenic which include several chemical and physical methods, however, bioremediation has proved to be an eco-friendly and inexpensive technique with promising results. Many microbes and plant species are known for arsenic biotransformation and detoxification. Arsenic bioremediation involves different pathways such as uptake, accumulation, reduction, oxidation, methylation, and demethylation. Each of these pathways has a certain set of genes and proteins to carry out the mechanism of arsenic biotransformation. Based on these mechanisms, various studies have been conducted for arsenic detoxification and removal. Genes specific for these pathways have also been cloned in several microorganisms to enhance arsenic bioremediation. This review discusses different biochemical pathways and the associated genes which play important roles in arsenic redox reactions, resistance, methylation/demethylation, and accumulation. Based on these mechanisms, new methods can be developed for effective arsenic bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

As:

Arsenic

As(V):

Arsenate

As(III):

Arsenite

Fe:

Iron

Cu:

Copper

P:

Phosphorous

FeAsS:

Arsenopyrite

ars :

Plasmid-borne arsenical resistance operon

MAs(III):

Methyl arsenite

ROS:

Reactive oxygen species

DSE:

Dark septate endophytes

APX:

Ascorbate peroxidase

POD:

Peroxidase

SOD:

Superoxide dismutase

PGP:

Plant growth promoting

Pi:

Inorganic phosphate

DMA:

Dimethylarsinic acid

TMA:

Trimethylarsinic acid

DMAs(III):

Dimethylarsine

TMAs(III):

Trimethylarsine

MMAAs:

Monomethylarsonic acid

DMAAs:

Dimethylarsenic acid

TMAsO:

Trimethylarsine oxide

GSH:

Glutathione

FeAsO4·2H2O:

Scorodite

NO3 1− :

Nitrates

SO4 2− :

Sulfates

Pst:

Phosphate transport system

Pit:

Inorganic phosphate transporter

MBfR:

Membrane biofilm reactor

T-RFLP:

Terminal restriction fragment length polymorphism

HFO:

Hydrous ferric oxides

DARPs:

Dissimilatory arsenate-reducing prokaryotes

ArsR:

Arsenical resistance operon transcriptional regulator

CmarsM:

S-Adenosylmethionine methyltransferase gene

References

  • Abedi T, Mojiri A (2020) Arsenic Uptake and Accumulation Mechanisms in Rice Species Plants 9:129

  • Adeloju SB, Khan S, Patti AF (2021) Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities. Rev Appl Sci 11:1926

  • Agre P et al (2002) Aquaporin water channels from atomic structure to clinical medicine. J. Phys. 542:3–16. https://doi.org/10.1113/jphysiol.2002.020818

    Article  CAS  Google Scholar 

  • Ajees AA, Marapakala K, Packianathan C, Sankaran B, Rosen BP (2012) Structure of an As(III) S-adenosylmethionine methyltransferase: insights into the mechanism of arsenic biotransformation. Biochem 51:5476–5485. https://doi.org/10.1021/bi3004632

    Article  CAS  Google Scholar 

  • Alexander T, Gulledge E, Han F (2016) Arsenic occurrence, ecotoxicity and its potential remediation. J Biorem Biodegrad 7:e174

  • Ali H, Khan E (2017) Environmental chemistry in the twenty-first century. Environ Chem Lett 15:329–346

    Article  CAS  Google Scholar 

  • Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347. https://doi.org/10.1007/s00284-003-4205-3

    Article  CAS  PubMed  Google Scholar 

  • Andreasen R, Li Y, Rehman Y, Ahmed M, Meyer R, Sabri A (2018) Prospective role of indigenous Exiguobacterium profundum PT2 in arsenic biotransformation and biosorption by planktonic cultures and biofilms. J appl microbiol 124:431–443

    Article  PubMed  Google Scholar 

  • Andreoni V, Zanchi R, Cavalca L, Corsini A, Romagnoli C, Canzi E (2012) Arsenite Oxidation in Ancylobacter dichloromethanicus As3–1b strain: detection of genes involved in arsenite oxidation and CO2 fixation. Curr Microbiol 65:212–218. https://doi.org/10.1007/s00284-012-0149-9

    Article  CAS  PubMed  Google Scholar 

  • Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322. https://doi.org/10.1093/femsre/fuv050

    Article  CAS  PubMed  Google Scholar 

  • Asif A, Mohsin H, Rehman Y (2021) Chapter 9 - Purple nonsulfur bacteria: an important versatile tool in biotechnology. In: De Mandal S, Passari AK (eds) Recent advancement in microbial biotechnology. Academic Press, pp 309–337. https://doi.org/10.1016/B978-0-12-822098-6.00003-3

  • Ayangbenro AS, Babalola OO (2017) A New Strategy for Heavy Metal Polluted Environments: a Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 14:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2013) Kinetics of arsenite oxidation by Variovorax sp. MM-1 isolated from a soil and identification of arsenite oxidase gene. J Hazard Mater 262:997–1003. https://doi.org/10.1016/j.jhazmat.2012.11.064

    Article  CAS  PubMed  Google Scholar 

  • Baker J, Wallschläger D (2016) The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella Vulgaris. J Environ Sci 49:169–178. https://doi.org/10.1016/j.jes.2016.10.002

    Article  CAS  Google Scholar 

  • Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic Accumulating and Transforming Bacteria Isolated from Contaminated Soil for Potential Use in Bioremediation. J Environ Sci Health 46:1736–1747. https://doi.org/10.1080/10934529.2011.623995

    Article  CAS  Google Scholar 

  • Banerjee A, Hazra A, Das S, Sengupta C (2020) Groundwater Inhabited Bacillus and Paenibacillus Strains Alleviate Arsenic-Induced Phytotoxicity of Rice Plant. Int J Phytorem 22:1048–1058

    Article  CAS  Google Scholar 

  • Batool K, tuz Zahra F, Rehman Y (2017) Arsenic-redox transformation and plant growth promotion by purple nonsulfur bacteria Rhodopseudomonas palustris CS2 and Rhodopseudomonas faecalis SS5. BioMed Res Int 2017:8. https://doi.org/10.1155/2017/6250327

  • Ben Fekih I et al (2018) Distribution of Arsenic Resistance Genes in Prokaryotes. Front Microbiol 9:2473–2473. https://doi.org/10.3389/fmicb.2018.02473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bermanec V et al. (2021) Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia. J Hazard Mater 402:123437. https://doi.org/10.1016/j.jhazmat.2020.123437

  • Bhattacharjee H, Li J, Ksenzenko M, Rosen B (1995) Role of cysteinyl residues in metalloactivation of the oxyanion- translocating ArsA ATPase. J Biol Chem 270:11245–11250

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee H, Rosen BP (1996) Spatial Proximity of Cys113, Cys172, and Cys422 in the metalloactivation domain of the ArsA ATPase. J Biol Chem 271:24465–24470. https://doi.org/10.1074/jbc.271.40.24465

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee H, Carbrey J, Rosen BP, Mukhopadhyay R (2004) Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9. Biochem Biophys Res Commun 322:836–841. https://doi.org/10.1016/j.bbrc.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  • Biswas R, Vivekanand V, Saha A, Sarkar A (2019) Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. Int Biodeterior Biodegrad 136:55–62

    Article  CAS  Google Scholar 

  • Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833. https://doi.org/10.1128/AEM.66.5.1826-1833.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9:1–11

    Article  Google Scholar 

  • Cai X, Wang P, Li Z, Li Y, Yin N, Du H, Cui Y (2020) Mobilization and transformation of arsenic from ternary complex OM-Fe(III)-As(V) in the presence of As(V)-reducing bacteria. J Hazard Mater 381:120975. https://doi.org/10.1016/j.jhazmat.2019.120975

  • Caille N, Zhao FJ, McGrath SP (2005) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol 165:755–761. https://doi.org/10.1111/j.1469-8137.2004.01239.x

    Article  CAS  PubMed  Google Scholar 

  • Cánovas D, Mukhopadhyay R, Rosen BP, De Lorenzo V (2003) Arsenate transport and reduction in the hyper-tolerant fungus Aspergillus sp. P37. Environ Microbiol 5:1087–1093

    Article  PubMed  Google Scholar 

  • Casiot C et al (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37:2929–2936

    Article  CAS  PubMed  Google Scholar 

  • Castrillo G et al (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957. https://doi.org/10.1105/tpc.113.114009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challenger F (1945) Biological Methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Chang JS, Kim Y-H, Kim K-W (2008) The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea. Appl Microbiol Biotechnol 80:155–165. https://doi.org/10.1007/s00253-008-1524-0

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Rosen BP (2016) Organoarsenical Biotransformations by Shewanella Putrefaciens. Environ Sci Technol 50:7956–7963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Rosen BP (2020) The arsenic methylation cycle: how microbial communities adapted methylarsenicals for use as weapons in the continuing war for dominance. Front Environ Sci 8:43

  • Chen J, Qin J, Zhu Y-G, De lorenzo VC, Rosen BP (2013) Engineering the Soil Bacterium Pseudomonas Putida for Arsenic Methylation. Appl Environ Microbiol 79:4493–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh M, Kumar L, Bhardwaj D, Bharadvaja N (2022) Bioaccumulation and detoxification of heavy metals: an insight into the mechanism. Dev Wastewater Treat Res Processes. Elsevier, pp 243–264

  • Chung J, Li X, Rittmann BE (2006) Bio-reduction of arsenate using a hydrogen-based membrane biofilm reactor. Chemosphere 65:24–34

    Article  CAS  PubMed  Google Scholar 

  • Corsini PM, Walker KT, Santini JM (2018) Expression of the arsenite oxidation regulatory operon in Rhizobium sp. str. NT-26 is under the control of two promoters that respond to different environmental cues. Microbiol Open 7:e00567

  • Cummings DE, Caccavo F, Fendorf S, Rosenzweig RF (1999) Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Environ Sci Technol 33:723–729

    Article  CAS  Google Scholar 

  • Das J, Sarkar P (2018) Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Sci Total Environ 624:1106–1118. https://doi.org/10.1016/j.scitotenv.2017.12.157

    Article  CAS  PubMed  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Article  CAS  PubMed  Google Scholar 

  • Di X, Beesley L, Zhang Z, Zhi S, Jia Y, Ding Y (2019) Microbial arsenic methylation in soil and uptake and metabolism of methylated arsenic in plants: a review. Int J Environ Res Public Health 16:5012

  • Dixit G et al (2016) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96

    Article  CAS  PubMed  Google Scholar 

  • Dolphen R, Thiravetyan P (2019) Reducing arsenic in rice grains by leonardite and arsenic–resistant endophytic bacteria. Chemosphere 223:448–454. https://doi.org/10.1016/j.chemosphere.2019.02.054

    Article  CAS  PubMed  Google Scholar 

  • Drewniak L, Stasiuk R, Uhrynowski W, Sklodowska A (2015) Shewanella sp. O23S as a driving agent of a system utilizing dissimilatory arsenate-reducing bacteria responsible for self-cleaning of water contaminated with arsenic. Int J Mol Sci 16:14409–14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan G-L et al (2015) Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202–15202. https://doi.org/10.1038/nplants.2015.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ microbiol 10:228–237

    CAS  PubMed  Google Scholar 

  • El-Araby EH, Salman KA, Mubarak F (2021) Human risk due to radon and heavy metals in soil. Iran J Public Health 50:1624

    PubMed  PubMed Central  Google Scholar 

  • Escudero LV, Casamayor EO, Chong G, Pedrós-Alió C, Demergasso C (2013) Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations PLOS ONE 8:e78890. https://doi.org/10.1371/journal.pone.0078890

  • Finnegan PM, Chen W (2012) Arsenic Toxicity: the Effects on Plant Metabolism. Front Physiol 3:182

  • Focardi S, Pepi M, Ruta M, Marvasi M, Bernardini E, Gasperini S, Focardi S (2010) Arsenic precipitation by an anaerobic arsenic-respiring bacterial strain isolated from the polluted sediments of Orbetello Lagoon. Italy Letters in Applied Microbiology 51:578–585

    Article  CAS  PubMed  Google Scholar 

  • Gahlout M, Prajapati H, Tandel N, Patel Y (2021) Biosorption: an eco-friendly technology for pollutant removal. In: Microbial rejuvenation of polluted environment. Springer, pp 207–227

  • Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New biotechnol 32:147–156

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T (2003) Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res 37:4945–4953

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PK, Maiti TK, Pramanik K, Ghosh SK, Mitra S, De TK (2018) The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere 211:407–419

    Article  CAS  PubMed  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    Article  CAS  PubMed  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862. https://doi.org/10.1021/es010816f

    Article  CAS  PubMed  Google Scholar 

  • González-Chávez MdCA et al (2011) Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biol 115:1197–1209. https://doi.org/10.1016/j.funbio.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  • Halttunen T, Finell M, Salminen S (2007) Arsenic removal by native and chemically modified lactic acid bacteria. Int J Food Microbiol 120:173–178. https://doi.org/10.1016/j.ijfoodmicro.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  • Hoeft SE, Lucas F, Hollibaugh JT, Oremland RS (2002) Characterization of microbial arsenate reduction in the anoxic bottom waters of Mono Lake. California Geomicrobiol J 19:23–40

    Article  CAS  Google Scholar 

  • Huang J-H (2014) Impact of microorganisms on arsenic biogeochemistry: a review Water. Air, & Soil Pollution 225:1848

    Article  Google Scholar 

  • Huang K, Chen C, Shen Q, Rosen BP, Zhao F-J (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Chen C, Zhang J, Tang Z, Shen Q, Rosen BP, Zhao F-J (2016) Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 50:6389–6396. https://doi.org/10.1021/acs.est.6b01974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilyas S, Rehman A, Coelho AV, Sheehan D (2016) Proteomic analysis of an environmental isolate of Rhodotorula mucilaginosa after arsenic and cadmium challenge: identification of a protein expression signature for heavy metal exposure. J Proteomics 141:47–56. https://doi.org/10.1016/j.jprot.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  • Ilyas S, Rehman A, Varela AC, Sheehan D (2014) Redox proteomics changes in the fungal pathogen Trichosporon asahii on arsenic exposure: identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate. PLOS ONE 9:e102340. https://doi.org/10.1371/journal.pone.0102340

  • Ilyas S, Rehman A, Ilyas Q (2017) Heavy metals induced oxidative stress in multi-metal tolerant yeast, Candida sp. PS33 and its capability to uptake heavy metals from wastewater. Pak J Zool 49

  • Islam M, Islam F, IWA WW (2010) Arsenic contamination in groundwater in Bangladesh: an environmental and social disaster IWA Water Wiki

  • Ito A, Miura J-I, Ishikawa N, Umita T (2012) Biological Oxidation of Arsenite in Synthetic Groundwater Using Immobilised Bacteria. Water Res 46:4825–4831

    Article  CAS  PubMed  Google Scholar 

  • Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol Biochem 37:2319–2322

    Article  CAS  Google Scholar 

  • Jana A, Bhattacharya P, Swarnakar S, Majumdar S, Ghosh S (2015) Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: process optimization by response surface methodology. Chemosphere 138:682–690. https://doi.org/10.1016/j.chemosphere.2015.07.055

    Article  CAS  PubMed  Google Scholar 

  • Jasrotia S, Kansal A, Kishore VVN (2014) Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy. Microchem J 114:197–202. https://doi.org/10.1016/j.microc.2014.01.005

    Article  CAS  Google Scholar 

  • Jasrotia S, Kansal A, Mehra A (2017) Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci 7:889–896. https://doi.org/10.1007/s13201-015-0300-4

    Article  CAS  Google Scholar 

  • Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci 89:9474–9478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji G, Garber EAE, Armes LG, Chen C-M, Fuchs JA, Silver S (1994) Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33:7294–7299. https://doi.org/10.1021/bi00189a034

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Hou Q, Yang Z, Zhong C, Zheng G, Yang Z, Li J (2014) Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ Pollut 188:159–165. https://doi.org/10.1016/j.envpol.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  • Kalia K, Joshi DN (2009) Detoxification of arsenic. In: Handbook of toxicology of chemical warfare agents. Elsevier, 1083–1100

  • Kalita J, Pradhan AK, Shandilya ZM, Tanti B (2018) Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Sci 25:235–249

    Article  Google Scholar 

  • Kang Y-S, Heinemann J, Bothner B, Rensing C, McDermott TR (2012) Integrated co-regulation of bacterial arsenic and phosphorus metabolisms. Environ Microbiol 14:3097–3109. https://doi.org/10.1111/j.1462-2920.2012.02881.x

    Article  CAS  PubMed  Google Scholar 

  • Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271. https://doi.org/10.1016/j.aquatox.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Rasool K, Ali A (2011) Role of arsenic and its resistance in nature. Can J Microbiol 57:769–774. https://doi.org/10.1139/w11-062%M21936668

    Article  CAS  PubMed  Google Scholar 

  • Khoo KS, Chia WY, Chew KW, Show PL (2021) Microalgal-bacterial consortia as future prospect in wastewater bioremediation, environmental management and bioenergy production. Indian J Microbiol 61:262–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauer K, Hemond H (2000) Accumulation and reduction of arsenate by the freshwater green alga Chlorella sp. (Chlorophyta). J Phycol 36:506–509

    Article  CAS  PubMed  Google Scholar 

  • Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K, Dong DT, Amachi S (2013) Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol 79:4635–4642. https://doi.org/10.1128/AEM.00693-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebrun E, Brugna M, Baymann F, Muller D, Lièvremont D, Lett M-C, Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme molecular. Biol Evol 20:686–693. https://doi.org/10.1093/molbev/msg071

    Article  CAS  Google Scholar 

  • Lehr CR, Polishchuk E, Radoja U, Cullen WR (2003) Demethylation of Methylarsenic Species by Mycobacterium Neoaurum. Appl Organomet Chem 17:831–834

    Article  CAS  Google Scholar 

  • Leiva ED et al (2014) Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Sci Total Environ 466–467:490–502. https://doi.org/10.1016/j.scitotenv.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  • Leong YK, Chang J-S (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Biores Technol 303:122886

  • Levy JL, Stauber JL, Adams MS, Maher WA, Kirby JK, Jolley DF (2005) Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum). Environ Toxicol Chem Int J 24:2630–2639

    Article  CAS  Google Scholar 

  • Li N, Wang J, Song W-Y (2015) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13. https://doi.org/10.1093/pcp/pcv143

    Article  CAS  PubMed  Google Scholar 

  • Li X, Qiao J, Li S, Häggblom MM, Li F, Hu M (2020) Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil. Environ Sci Technol 54:2172–2181. https://doi.org/10.1021/acs.est.9b04308

    Article  CAS  PubMed  Google Scholar 

  • Liao VH-C et al (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29. https://doi.org/10.1016/j.jconhyd.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int 2014:503784–503784. https://doi.org/10.1155/2014/503784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351:424–430. https://doi.org/10.1016/j.bbrc.2006.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Bilal M, Duan X, Iqbal HM (2019) Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives. Sci Total Environ 667:444–454

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Wang Z, Yan Y, Li J, Yan C, Xing B (2018) Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species. Environ Pollut 238:631–637

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Routh J, Luo D, Wei L, Liu Y (2021) Arsenic in the pearl river delta and its related waterbody. South China: Occurrence and Sources, a Review. Geosci Lett 8:12. https://doi.org/10.1186/s40562-021-00185-9

  • Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57. https://doi.org/10.1007/s002030050007

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Kusadome K, Arima H, Ohki A, Naka K (1992) Biomethylation of Arsenic and Its Excretion by the Alga Chlorella Vulgaris Applied Organometallic Chemistry 6:407–413

    CAS  Google Scholar 

  • Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610–611:1239–1250. https://doi.org/10.1016/j.scitotenv.2017.07.234

    Article  CAS  PubMed  Google Scholar 

  • Manoj SR, Karthik C, Kadirvelu K, Arulselvi PI, Shanmugasundaram T, Bruno B, Rajkumar M (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage 254

    Article  CAS  PubMed  Google Scholar 

  • Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BF (2001) Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Struct 9:1071–1081

    Article  CAS  Google Scholar 

  • McDermott TR, Stolz JF, Oremland RS (2020) Arsenic and the Gastrointestinal Tract Microbiome. Environ Microbiol Rep 12:136–159

    Article  PubMed  Google Scholar 

  • Mehdi SEH et al (2021) Sources, chemistry, bioremediation and social aspects of arsenic-contaminated waters: a review. Environ Chem Lett 19:3859–3886

    Article  CAS  Google Scholar 

  • Mesa V et al (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:e03411-03416

  • Messens J, Hayburn G, Desmyter A, Laus G, Wyns L (1999) The essential catalytic redox couple in arsenate reductase from Staphylococcus aureus Biochemistry 38:16857–16865. https://doi.org/10.1021/bi9911841

    Article  CAS  PubMed  Google Scholar 

  • Metali F, Salim KA, Burslem DF (2012) Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytol 193:637–649

    Article  CAS  PubMed  Google Scholar 

  • Michalke K, Wickenheiser E, Mehring M, Hirner A, Hensel R (2000) Production of volatile derivatives of metal (loid) s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min D, Wu J, Cheng L, Liu D-F, Lau T-C, Yu H-Q (2021) Dependence of arsenic resistance and reduction capacity of Aeromonas hydrophila on carbon substrate. J Hazard Mater 403:123611. https://doi.org/10.1016/j.jhazmat.2020.123611

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  CAS  PubMed  Google Scholar 

  • Mohsin H, Asif A, Rehman Y (2019) Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic-resistant Rhodopseudomonas and Rhodobacter species. J Basic Microbiol 59:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Mohsin H, Shafique M, Rehman Y (2021) Genes and biochemical pathways involved in microbial transformation of arsenic. In: Kumar N (ed) Arsenic toxicity: challenges and solutions. Springer Singapore. Singapore 391–413. https://doi.org/10.1007/978-981-33-6068-6_15

  • Mujawar SY, Shamim K, Vaigankar DC, Dubey SK (2019) Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. BioMetals 32:65–76

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157. https://doi.org/10.1074/jbc.M910401199

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of Acr2p, theSaccharomyces cerevisiae arsenate reductase. J Biol Chemi 275:21149–21157

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta 1840:1583–1591. https://doi.org/10.1016/j.bbagen.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110:745–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadar VS, Kandavelu P, Sankaran B, Rosen BP, Yoshinaga M (2022b) The ArsI C-As lyase: elucidating the catalytic mechanism of degradation of organoarsenicals. J Inorg Biochem 232:111836

  • Nadar VS, Kandavelu P, Sankaran B, Rosen BP, Yoshinaga M (2022a) The ArsI C-As lyase: elucidating the catalytic mechanism of degradation of organoarsenicals. J Inorg Biochem 232:111836. https://doi.org/10.1016/j.jinorgbio.2022.111836

  • Nam I-H, Murugesan K, Ryu J, Kim JH (2019) Arsenic (As) removal using Talaromyces sp. KM-31 isolated from as-contaminated mine soil Minerals 9:568

  • Natarajan K (2008) Microbial aspects of acid mine drainage and its bioremediation. Transactions of Nonferrous Metals Society of China 18:1352–1360

    Article  CAS  Google Scholar 

  • Naureen A, Rehman A (2016) Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment. World J Microbiol Biotechnol 32:1–9

    Article  CAS  Google Scholar 

  • Navazas A, Thijs S, Feito I, Vangronsveld J, Peláez AI, Cuypers A, González A (2021) Arsenate-reducing bacteria affect As accumulation and tolerance in Salix atrocinerea. Sci Total Environ 769

  • Nguyen VK, Tran HT, Park Y, Yu J, Lee T (2017) Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor. J Ind Microbiol Biotechnol 44:857–868. https://doi.org/10.1007/s10295-017-1910-7

    Article  CAS  PubMed  Google Scholar 

  • Niazi NK et al (2017) Phosphate-Assisted Phytoremediation of Arsenic by Brassica Napus and Brassica Juncea: Morphological and Physiological Response International Journal of Phytoremediation 19:670–678

    CAS  PubMed  Google Scholar 

  • Nookongbut P, Kantachote D, Megharaj M (2016) Arsenic contamination in areas surrounding mines and selection of potential As-resistant purple nonsulfur bacteria for use in bioremediation based on their detoxification mechanisms. Annals of Microbiology 66:1419–1429. https://doi.org/10.1007/s13213-016-1229-z

    Article  CAS  Google Scholar 

  • Nookongbut P, Kantachote D, Krishnan K, Megharaj M (2017) Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. J Basic Microbiol 57:316–324

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka T et al (2013) Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. Environ Sci Technol 47:6263–6271. https://doi.org/10.1021/es400231x

    Article  CAS  PubMed  Google Scholar 

  • Omoregie EO et al (2013) Arsenic bioremediation by biogenic iron oxides and sulfides. Appl Environ Microbiol 79:4325–4335. https://doi.org/10.1128/AEM.00683-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onyia PC, Ozoko DC, Ifediegwu SI (2020) Phytoremediation of arsenic-contaminated soils by arsenic hyperaccumulating plants in selected areas of Enugu State, Southeastern. Nigeria Geol Ecol Landscape 1–12

  • Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71:6206–6215. https://doi.org/10.1128/AEM.71.10.6206-6215.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oremland RS et al (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake. California Geochim Cosmochim Acta 64:3073–3084. https://doi.org/10.1016/S0016-7037(00)00422-1

    Article  CAS  Google Scholar 

  • Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panagiotaras D, Nikolopoulos D (2015) Arsenic occurrence and fate in the environment; a geochemical perspective. J Earth Sci Clim Change 6:1

  • Pandey N, Bhatt R (2016) Role of soil associated Exiguobacterium in reducing arsenic toxicity and promoting plant growth in Vigna radiata. Eur J Soil Biol 75:142–150

    Article  CAS  Google Scholar 

  • Pawlik-Skowrońska B, Pirszel J, Kalinowska R, Skowroński T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70:201–212. https://doi.org/10.1016/j.aquatox.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  • Pipattanajaroenkul P, Chotpantarat S, Termsaithong T, Sonthiphand P (2021) Effects of arsenic and iron on the community and abundance of arsenite-oxidizing bacteria in an arsenic-affected groundwater aquifer. Curr Microbiol 78:1324–1334. https://doi.org/10.1007/s00284-021-02418-8

    Article  CAS  PubMed  Google Scholar 

  • Pous N, Casentini B, Rossetti S, Fazi S, Puig S, Aulenta F (2015) Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: a novel approach to the bioremediation of arsenic-polluted groundwater. J Hazard Mater 283:617–622

    Article  CAS  PubMed  Google Scholar 

  • Poynton CY, Huang JW, Blaylock MJ, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088. https://doi.org/10.1007/s00425-004-1304-8

    Article  CAS  PubMed  Google Scholar 

  • Price AH et al (2013) Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer. Food and Energy Secur 2:120–129

    Article  Google Scholar 

  • Qiao J-t, Li X-m, Li F-b (2018) Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar. J Hazard Mater 344:958–967. https://doi.org/10.1016/j.jhazmat.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic Arsenic: Phytoremediation Using Floating Macrophytes Chemosphere 83:633–646

    CAS  PubMed  Google Scholar 

  • Rajendran S et al. (2022) A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287:132369. https://doi.org/10.1016/j.chemosphere.2021.132369

  • Relations CoF (2023) Ecological disasters 1912–2020. https://doi.org/https://www.cfr.org/timeline/ecological-disasters. Accessed 23 Mar 2023

  • Rhine ED, Phelps CD, Young L (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:899–908

    Article  CAS  PubMed  Google Scholar 

  • Rosen BP (1999) Families of Arsenic Transporters Trends Microbiol 7:207–212. https://doi.org/10.1016/s0966-842x(99)01494-8

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511. https://doi.org/10.1128/jb.131.2.505-511.1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem H (2019) ul Ain Kokab Q, Rehman Y. Arsenic Respiration and Detoxification by Purple Non-Sulphur Bacteria under Anaerobic Conditions C R Biol 342:101–107. https://doi.org/10.1016/j.crvi.2019.02.001

    Article  PubMed  Google Scholar 

  • Sanders OI, Rensing C, Kuroda M, Mitra B, Rosen BP (1997) Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol 179:3365–3367. https://doi.org/10.1128/jb.179.10.3365-3367.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl environ microbiol 66:92–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal. India Ecotoxicology 22:363–376. https://doi.org/10.1007/s10646-012-1031-z

    Article  CAS  PubMed  Google Scholar 

  • Saunders JA, Lee M-K, Dhakal P, Ghandehari SS, Wilson T, Billor MZ, Uddin A (2018) Bioremediation of Arsenic-Contaminated Groundwater by Sequestration of Arsenic in Biogenic Pyrite Applied Geochemistry 96:233–243

    CAS  Google Scholar 

  • Selvakumar R et al (2011) As(V) removal using carbonized yeast cells containing silver nanoparticles. Water Res 45:583–592. https://doi.org/10.1016/j.watres.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  • Shah MP (2020) Microbial bioremediation & biodegradation. Springer

  • Shakoor MB et al (2016) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol 46:467–499

    Article  CAS  Google Scholar 

  • Shankar S, Shanker U, Shikha, (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:304524–304524. https://doi.org/10.1155/2014/304524

    Article  Google Scholar 

  • Shen MW, Shah D, Chen W, Da Silva N (2012) Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. Biotechnol prog 28:654–661

    Article  CAS  PubMed  Google Scholar 

  • Sher S, Sultan S, Rehman A (2021) Characterization of multiple metal resistant Bacillus licheniformis and its potential use in arsenic contaminated industrial wastewater Applied Water. Science 11:69. https://doi.org/10.1007/s13201-021-01407-3

    Article  CAS  Google Scholar 

  • Sher S, Rehman A (2019) Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Appl microbiol biotechnol 103:6007–6021

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Vlamis-Gardikas A, Åslund F, Holmgren A, Rosen BP (1999) Reactivity of glutaredoxins 1, 2, and 3 from Escherichia coli shows that glutaredoxin 2 is the primary hydrogen donor to ArsC-catalyzed arsenate reduction. J Biol Chem 274:36039–36042. https://doi.org/10.1074/jbc.274.51.36039

    Article  CAS  PubMed  Google Scholar 

  • Shi K, Fan X, Qiao Z, Han Y, McDermott TR, Wang Q, Wang G (2017) Arsenite oxidation regulator AioR regulates bacterial chemotaxis towards arsenite in Agrobacterium tumefaciens GW4. Sci Rep 7:43252. https://doi.org/10.1038/srep43252

  • Shivaji S, Suresh K, Chaturvedi P, Dube S, Sengupta S (2005) Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal. India International Journal of Systematic and Evolutionary Microbiology 55:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Shrestha R (2012) Arsenic contamination of groundwater in Nepal: Good public health intention gone bad Inquiries Journal 4

  • Shukla J et al. (2022) Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant. Environ Pollut 298:118830. https://doi.org/10.1016/j.envpol.2022.118830

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonthiphand P et al. (2021) Microbial community structure in aquifers associated with arsenic: analysis of 16S rRNA and arsenite oxidase genes PeerJ 9:e10653

  • Spagnoletti FN, Balestrasse K, Lavado RS, Giacometti R (2016) Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol Environ Saf 133:47–56

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Dwivedi AK (2015) Biological Wastes the Tool for Biosorption of Arsenic Journal of Bioremediation and Biodegradation 7:1–3

    Google Scholar 

  • Srivastava S et al (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047. https://doi.org/10.1016/j.jhazmat.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S et al (2018) Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). J hazard mater 351:177–187

    Article  CAS  PubMed  Google Scholar 

  • Su S, Zeng X, Bai L, Li L, Duan R (2011) Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1. Sci Total Environ 409:5057–5062. https://doi.org/10.1016/j.scitotenv.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Sierra-Alvarez R, Hsu I, Rowlette P, Field JA (2010) Anoxic oxidation of arsenite linked to chemolithotrophic denitrification in continuous bioreactors. Biotechnol Bioeng 105:909–917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh K, Reddy G, Sengupta S, Shivaji S (2004) Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal. India International Journal of Systematic and Evolutionary Microbiology 54:457–461

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127:434–442. https://doi.org/10.1016/j.jbiotec.2006.07.018

    Article  CAS  PubMed  Google Scholar 

  • Tani Y, Miyata N, Ohashi M, Ohnuki T, Seyama H, Iwahori K, Soma M (2004) Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21–2. Environ Sci Technol 38:6618–6624. https://doi.org/10.1021/es049226i

    Article  CAS  PubMed  Google Scholar 

  • Thul S, Nigam B, Tiwari S, Pandey RA (2019) Arsenite-oxidation performance of microbes from abandoned iron ore. Indian J Biotechnol 18:34–41

    CAS  Google Scholar 

  • Tian H, Wang J, Li J, Wang Y, Mallavarapu M, He W (2019) Six new families of aerobic arsenate reducing bacteria: Leclercia, Raoultella, Kosakonia, Lelliottia, Yokenella, and Kluyvera. Geomicrobiol J 36:339–347

    Article  CAS  Google Scholar 

  • Tripathi P, Khare P, Barnawal D, Shanker K, Srivastava PK, Tripathi RD, Kalra A (2020) Bioremediation of arsenic by soil methylating fungi: role of Humicola sp. strain 2WS1 in amelioration of arsenic phytotoxicity in Bacopa monnieri L. Sci Total Environ 716:136758

  • Tu S, Ma LQ, Fayiga AO, Zillioux EJ (2004) Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int J Phytorem 6:35–47

    Article  CAS  Google Scholar 

  • Tuffin IM, Hector SB, Deane SM, Rawlings DE (2006) Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72:2247–2253. https://doi.org/10.1128/AEM.72.3.2247-2253.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrynowski W, Debiec K, Sklodowska A, Drewniak L (2017) The role of dissimilatory arsenate reducing bacteria in the biogeochemical cycle of arsenic based on the physiological and functional analysis of Aeromonas sp. O23A. Sci The Total Environ 598:680–689. https://doi.org/10.1016/j.scitotenv.2017.04.137

    Article  CAS  Google Scholar 

  • Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf 124:68–73. https://doi.org/10.1016/j.ecoenv.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya G, Jackson J, Clancy TM, Hyun SP, Brown J, Hayes KF, Raskin L (2010) Simultaneous removal of nitrate and arsenic from drinking water sources utilizing a fixed-bed bioreactor system. Water Res 44:4958–4969

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • vanden Hoven RN, Santini JM, (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor Biochimica et Biophysica Acta (BBA). Bioenerg 1656:148–155. https://doi.org/10.1016/j.bbabio.2004.03.001

    Article  CAS  Google Scholar 

  • Verma S, Verma PK, Chakrabarty D (2019) Arsenic bio-volatilization by engineered yeast promotes rice growth and reduces arsenic accumulation in grains International. J Environ Res 13:475–485

    CAS  Google Scholar 

  • Viacava K et al (2020) Variability in arsenic methylation efficiency across aerobic and anaerobic microorganisms. Environ Sci Technol 54:14343–14351. https://doi.org/10.1021/acs.est.0c03908

    Article  CAS  PubMed  Google Scholar 

  • Vidal FV, Vidal VMV (1980) Arsenic metabolism in marine bacteria and yeast. Mar Biol 60:1–7. https://doi.org/10.1007/BF00395600

    Article  CAS  Google Scholar 

  • Visoottiviseth P, Panviroj N (2001) Selection of fungi capable of removing toxic arsenic compounds from liquid medium Sci. Asia 27:83–92

    CAS  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The Potential of Thai Indigenous Plant Species for the Phytoremediation of Arsenic Contaminated Land Environmental Pollution 118:453–461

    CAS  PubMed  Google Scholar 

  • Vithanage M, Dabrowska BB, Mukherjee AB, Sandhi A, Bhattacharya P (2012) Arsenic Uptake by Plants and Possible Phytoremediation Applications: a Brief Overview Environmental Chemistry Letters 10:217–224

    CAS  Google Scholar 

  • Wang Y (2016) Liu X-h, Si Y-b, Wang R-f. Release and Transformation of Arsenic from as-Bearing Iron Minerals by Fe-Reducing Bacteria Chemical Engineering Journal 295:29–38. https://doi.org/10.1016/j.cej.2016.03.027

    Article  CAS  Google Scholar 

  • Wang Y, Zhang C, Yu X, Ge Y (2020) Arsenite oxidation by Dunaliella salina is affected by external phosphate concentration. Bull Environ Contam Toxicol 105:868–873. https://doi.org/10.1007/s00128-020-03045-y

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Cui S, Ma L, Wang Z, Wang H (2021) Variations of arsenic forms and the role of arsenate reductase in three hydrophytes exposed to different arsenic species. Ecotoxicol Environ Saf 221

    Article  CAS  PubMed  Google Scholar 

  • Warelow TP et al. (2013) The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster. PLoS One 8:e72535. https://doi.org/10.1371/journal.pone.0072535

  • Weithmann N et al (2019) Arsenic Metabolism in Technical Biogas Plants: Possible Consequences for Resident Microbiota and Downstream Units AMB Express 9:190. https://doi.org/10.1186/s13568-019-0902-6

    Article  CAS  PubMed  Google Scholar 

  • WHO (2018) Arsenic. https://doi.org/https://www.who.int/news-room/fact-sheets/detail/arsenic. Accessed May 27, 2021.

  • Wu J-Y, Lay C-H, Chia SR, Chew KW, Show PL, Hsieh P-H, Chen C-C (2021a) Economic potential of bioremediation using immobilized microalgae-based microbial fuel cells. Clean Technol Environ Policy 23:2251–2264. https://doi.org/10.1007/s10098-021-02131-x

    Article  CAS  Google Scholar 

  • Wu Q, Du J, Zhuang G, Jing C (2013) Bacillus sp. SXB and Pantoea sp. IMH, aerobic As (V)-reducing bacteria isolated from arsenic-contaminated soil. J appl microbiol 114:713–721

    Article  CAS  PubMed  Google Scholar 

  • Wu J (2005) A comparative study of arsenic methylation in a plant, yeast and bacterium

  • Wu G et al. (2017) Thioarsenate formation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium Isolated from a Hot Spring. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01336

  • Wu F-Y et al (2021b) Anaerobic As(III) Oxidation coupled with nitrate reduction and attenuation of dissolved arsenic by Noviherbaspirillum species ACS. Earth and Space Chem 5:2115–2123. https://doi.org/10.1021/acsearthspacechem.1c00155

    Article  CAS  Google Scholar 

  • Wysocki R, Chéry CC, Wawrzycka D, van Hulle M, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401. https://doi.org/10.1046/j.1365-2958.2001.02485.x

    Article  CAS  PubMed  Google Scholar 

  • Xu W et al (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733. https://doi.org/10.1016/j.molp.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T (2014) Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ Sci Technol 48:1549–1556

    Article  CAS  PubMed  Google Scholar 

  • Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118:1–9

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Ye J, Xue X-M, Zhu Y-G (2015) Arsenic demethylation by a C·As lyase in Cyanobacterium Nostoc sp. PCC 7120. Environ Sci Technol 49:14350–14358. https://doi.org/10.1021/acs.est.5b03357

    Article  CAS  PubMed  Google Scholar 

  • Yan M et al. (2020) Dissolved organic matter differentially influences arsenic methylation and volatilization in paddy soils. J Hazard Mater 388:121795. https://doi.org/10.1016/j.jhazmat.2019.121795

  • Yang H-C, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997. https://doi.org/10.1128/JB.187.20.6991-6997.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JB, Salam AAA, Rosen BP (2011) Genetic mapping of the interface between the ArsD metallochaperone and the ArsA ATPase. Mol Microbiol 79:872–881. https://doi.org/10.1111/j.1365-2958.2010.07494.x

    Article  CAS  PubMed  Google Scholar 

  • Yin X-X, Wang LH, Bai R, Huang H, Sun G-X (2012) Accumulation and transformation of arsenic in the blue-green alga Synechocysis sp. PCC6803 Water. Air, & Soil Pollution 223:1183–1190. https://doi.org/10.1007/s11270-011-0936-0

    Article  CAS  Google Scholar 

  • Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbiol 13:1205–1215. https://doi.org/10.1111/j.1462-2920.2010.02420.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zargar K, Hoeft S, Oremland R, Saltikow CW (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192:3755–3762. https://doi.org/10.1128/JB.00244-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhou W, Liu B, He J, Shen Q, Zhao F-J (2015) Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 49:5956–5964. https://doi.org/10.1021/es506097c

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhao S, Xu Y, Zhou W, Huang K, Tang Z, Zhao F-J (2017) Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils. Environ Sci Technol 51:4377–4386. https://doi.org/10.1021/acs.est.6b06255

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cao T, Tang Z, Shen Q, Rosen BP, Zhao F-J (2015) Arsenic methylation and volatilization by arsenite S-adenosylmethionine methyltransferase in Pseudomonas alcaligenes NBRC14159. Appl environ microbiol 81:2852–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al. (2022) Arsenic bioaccumulation and biotransformation in aquatic organisms. Environ Int107221

  • Zheng Y (2020) Global Solutions to a Silent Poison Science 368:818–819

    CAS  PubMed  Google Scholar 

  • Zhu Y-G, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotechnol 20:220–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to acknowledge Miss Umaima Mohsin (Research Center of Art and Design, Lahore College for Women University, umaimamohsin14@gmail.com) for her technical assistance in making the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Rehman.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors concur with this submission for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsin, H., Shafique, M., Zaid, M. et al. Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation. Folia Microbiol 68, 507–535 (2023). https://doi.org/10.1007/s12223-023-01068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-023-01068-6

Keywords

Navigation