Skip to main content
Log in

Accumulation and Transformation of Arsenic in the Blue-Green Alga Synechocysis sp. PCC6803

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Synechocysis sp. PCC6803 is a unicellular blue alga which ubiquitously exists in aquatic system and is considered to play a role in arsenic cycling. Our results showed that Synechocysis can accumulate arsenic as much as 1.0 and 0.9 g kg−1 DW when exposed to 0.5 mM arsenate and arsenite for 14 days, respectively. In addition, arsenic species in cells were assayed under different exposure conditions and it was found that inorganic arsenic, including arsenate and arsenite, is the dominant species. Organic methylated arsenicals can only be detected exposed to higher arsenic concentration range (100–500 μM). Arsenate is the dominant arsenic species and presents more than 80% of the total arsenic in cells. Efflux of both arsenate and arsenite was observed. When treated with 2.67 μM arsenite, Synechocysis can rapidly oxidize arsenite to arsenate and accumulate As rapidly. The observed arsenic oxidation in solute is solely caused by cellular oxidation. Given the robust ability of As accumulation, it can serve as a phytoremediation organism to efficiently remove arsenic from aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environmental Science and Technology, 35, 2621–2626. doi:10.1021/es010027y.

    Article  CAS  Google Scholar 

  • Bhattacharjee, H., & Rosen, B. P. (2007). Arsenic metabolism in prokaryotic and eukaryotic microbes. molecular microbiology of heavy metals. Microbiology Monographs, 6, 371–406.

    Article  Google Scholar 

  • Connon, S. A., Koski, A. K., Neal, A. L., Wood, S. A., & Magnuson, T. S. (2008). Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hotspring system of the Alvord Desert. FEMS Microbiology Ecology, 64, 117–128.

    Article  CAS  Google Scholar 

  • Duester, L., van der Geest, H. G., Moelleken, S., Hirner, A. V., & Kueppers, K. (2011). Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum. Microchemical Journal, 97, 30–37.

    Article  CAS  Google Scholar 

  • Granchinho, C. R., Polishchuk, E., Cullen, W. R., & Reimer, K. J. (2001). Biomethylation and bioaccumulation of arsenic(V) by marine alga Fucus gardeneri. Applied Organometallic Chemistry, 15, 553–560. doi:10.1002/aoc.183.

    Article  CAS  Google Scholar 

  • Kaise, T., Fujiwara, S., Tsuzuki, M., Sakurai, T., Saitoh, T., & Mastubara, C. (1999). Accumulation of arsenic in a unicellular alga Chlamydomonas reinhardtii. Applied Organometallic Chemistry, 13, 107–111. doi:10.1002/(SICI)1099-0739(199902.

    Article  CAS  Google Scholar 

  • Langner, H. W., Jackson, C. R., McDermott, T. R., & Inskeep, W. P. (2001). Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environomental Science and Technology, 35, 3302–3309. doi:10.1021/es0105562.

    Article  CAS  Google Scholar 

  • Meharg, A. A. (2004). Arsenic in rice — understanding a new disaster for South-East Asia. Trend in Plant Science, 9, 415–417. doi:10.1016/j.tplants.2004.07.002.

    Article  CAS  Google Scholar 

  • Meliker, J. R., Wahl, R. L., Cameron, L. L., & Nriagu, J. O. (2007). Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environmental Health, 6, 11. doi:10.1186/1476-069X-6-4.

    Article  Google Scholar 

  • Ning, Z. X., Lobdell, D. T., Kwok, R. K., Liu, Z. Y., Zhang, S. Y., Ma, C. L., et al. (2007). Residential exposure to drinking water arsenic in inner Mongolia, China. Toxicology Applied Pharmacology, 222, 351–356. doi:10.1016/j.taap.2007.02.012.

    Article  CAS  Google Scholar 

  • Qin, J., Lehr, C. R., Yuan, C. G., Le, C., McDermott, T. R., & Rosen, B. P. (2009). Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proceedings of the National Academy of Sciences of the United States of America, 106, 5213–5217. doi:10.1073/pnas.0900238106.

    Article  CAS  Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61.

    Google Scholar 

  • Rosen, B. P. (2002). Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 133, 689–693.

    Article  Google Scholar 

  • Salmassi, T. M., Walker, J. J., Newman, D. K., Leadbetter, J. R., Pace, N. R., & Hering, J. G. (2006). Community and cultivation analysis of arsenite oxidizing biofilms at Hot Creek. Environmental Microbiology, 8, 50–59. doi:10.1111/j.1462-2920.2005.00862.x.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi:10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Smith, A. H., Lopipero, P. A., Bates, M. N., & Steinmaus, C. M. (2002). Public health — arsenic epidemiology and drinking water standards. Science, 296, 2145–2146. doi:10.1126/science.1072896.

    Article  CAS  Google Scholar 

  • Starý, J., Havlík, B., Kratzer, K., Prášilová, J., & Hanušová, J. (1983). Cumulation of zinc, cadmium and mercury on the alga Scenedesmus obliquus. Acta Hydrochimica Hydrobiologica, 11, 401–409.

    Article  Google Scholar 

  • Suhendrayatna, A., Kuroiwa, O. T., & Maeda, S. (1999). Arsenic compounds in the freshwater green microalgae Chlorella vulgaris after exposure to arsenite. Applied Organometallic Chemistry, 13, 128–129. doi:10.1002/(SICI)1099-0739(199902.

    Article  Google Scholar 

  • Vijayaraghavan, K., Jegan, R. J., Palanivelu, K., & Velan, M. (2004). Copper removal from aqueous solution by marine green alga UIva reticulate. Electronic Journal Biotechnology, 7, 61–71.

    Google Scholar 

  • Xu, X. Y., McGrath, S. P., & Zhao, F. J. (2007). Rapid reduction of arsenate in the medium mediated by plant roots. New Phytologist, 176, 590–599. doi:10.1111/j.1469-8137.2007.02195.x.

    Article  CAS  Google Scholar 

  • Yin, X. X., Chen, J., Qin, J., Sun, G. X., Rosen, B. P., & Zhu, Y. G. (2011a). Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiology, 156, 1631–1638. doi:10.1104/pp.111.178947.

    Article  CAS  Google Scholar 

  • Yin, X. X., Wang, L. H., Duan, G. L., & Sun, G. X. (2011b). Characterization of arsenate transformation and identification of arsenate reductase in a green alga Chlamydomonas reinhardtii. Journal of Environmental Sciences, 23, 1186–1193. doi:10.1016/S1001-0742(10)60492-5.

    Article  CAS  Google Scholar 

  • Zhang, X., Lin, A. J., Zhao, F. J., Xu, G. Z., Duan, G. L., & Zhu, Y. G. (2008). Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution, 156, 1149–1155. doi:10.1016/j.envpol.2008.04.002.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhao, F. J., Huang, Q., Williams, P. N., Sun, G. X., & Zhu, Y. G. (2009). Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist, 182, 421–428. doi:10.1111/j.1469-8137.2008.02758.x.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Sun, G. X., Lei, M., Teng, M., Liu, Y. X., Chen, N. C., et al. (2008). High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environmental Science and Technology, 42, 5008–8013. doi:10.1021/es8001103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jian Chen (CAS RCEES, China) for samples analysis. This study was financially supported in part by the National Natural Science Foundation of China (No. 21077100) and Doctor Foundation of Shandong province (No. BS2009HZ024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Xin Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, XX., Wang, L.H., Bai, R. et al. Accumulation and Transformation of Arsenic in the Blue-Green Alga Synechocysis sp. PCC6803. Water Air Soil Pollut 223, 1183–1190 (2012). https://doi.org/10.1007/s11270-011-0936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0936-0

Keywords

Navigation