Skip to main content
Log in

Newly derived GH43 gene from compost metagenome showing dual xylanase and cellulase activities

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A metagenomic fosmid library was constructed from compost microbial communities that were collected from various farms throughout the Khon Kaen province, Thailand. The library was enriched in carboxymethylcellulose (CM-cellulose)—containing media prior to the screening of clones capable of degrading cellulosic materials. Two clones were selected for further subcloning and sequencing based on different patterns from restriction analysis. Deduced amino acid analysis of possible ORFs revealed one novel gene encoding an enzyme belonging to glycosyl hydrolase family 43 (GH43), which is a GH family rarely found in metagenomic studies. The most notable finding is that this enzyme, designated as Biof1_09, shows dual activities, namely endocellulase and endoxylanase activities. Biof1_09 showed greater than 50 % of its activity under acidic conditions ranging from pH 3.5 to 5.5 with a pH optimum of 4.5. The optimum temperature of this enzyme was between 45 and 55 °C with an optimum of 50 °C. The properties of Biof1_09 make this enzyme an attractive candidate for large-scale expression for use in lignocellulose degradation for various bioprocess applications, including bioethanol fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58(1):215–220

    Article  CAS  PubMed  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci 106(6):1948–1953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) Beta-1,4-d-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17:259–289

    CAS  PubMed  Google Scholar 

  • Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 10:245–256

    Article  Google Scholar 

  • Duncan SH, Hold GL, Barcenilla A, Stewartand CS, Flint HJ (2002) Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52:1615–1620

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75:319–328

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Ghazi A, Beloqui A, Vieites JM, Lopez-Cortes N, Martin-Navarro J, Nechitaylo TY, Guazzaroni ME, Polaina J, Waliczek A, Chernikova TN, Reva ON, Golyshina OV, Golyshin PN (2012) Functional metagenomics unveils a multifunction glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymer in the calf rumen. PLoS ONE 7(6):e38134. doi:10.1371/journal pone 0038134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, Strompl C, Elborough K, Jarvis G, Neef A, Yakimov MM, Timmis KN, Golyshin PN (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010

    Article  CAS  PubMed  Google Scholar 

  • Finegold SM, Shutter VL, Mathison GE (1983) Normal indigenous flora. In: Hentges DJ (ed) Human intestinal microflora in health and disease. Academic, New York, pp 3–31

    Chapter  Google Scholar 

  • Graciano L, Corrêa JM, Gandra RF, Seixas FA, Kadowaki MK, Sampaio SC, Silva JL, Osaku CA, Simão Rde C (2012) The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus β-xylosidase I. World J Microbiol Biotechnol 28(9):2879–2888

    Article  CAS  PubMed  Google Scholar 

  • Grant S, Sorokin DY, Grant WD, Jones BE, Heaphy S (2004) A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. Extremophiles 8:421–429

    Article  CAS  PubMed  Google Scholar 

  • Harnpicharnchai P, Thongaram T, Sriprang R, Champreda V, Tanapongpipatand LS, Eurwilaichitra L (2007) An efficient purification and fractionation of genomic DNA from soil by modified troughing method. Lett Appl Microbiol 45:387–391

    Article  CAS  PubMed  Google Scholar 

  • Healy FG, Ray RM, Aldrich HC, Wilkie AC, Ingram LO, Shanmugam KT (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl Microbiol Biotechnol 43:667–674

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB, Wagschal K (2010) Properties and applications of microbial β-d-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium. Appl Microbiol Biotechnol 86(6):1647–1658. doi:10.1007/s00253-010-2538-y

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB, Li XL, Dunlap CA, Whitehead TR, Cotta M (2007) A structure function relationships of a catalytically efficient β-d-xylosidase. Appl Biochem Biotechnol 141:51–76

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Lee CM, Han BR, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Lee CM, Kim MY, Yeo YS, Yoon SH, Kang HC, Koo BS (2007) Screening and characterization of an enzyme with beta-glucosidase activity from environmental DNA. J Microbiol Biotechnol 17:905–912

    CAS  PubMed  Google Scholar 

  • Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  • Kratz M (2010) Lactobacilli and other lactic acid-related bacteria in the mucosa proximal gastrointestinal tract of pigs: a review of ecology for two derivative approaches for isolation of novel species. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp 674–686

    Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res 2011:1–10

    Article  Google Scholar 

  • Liu L, Feng Y, Duan CJ, Pang H, Tang JL, Feng JX (2009) Isolation of the gene encoding endoglucanase activity from uncultured microorganisms in buffalo rumen. World J Microbiol Biotechnol 25:1035–1042

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, Scott CD, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of protein. Nucleic Acids Res 39:225–229

    Article  Google Scholar 

  • Moore WEC, Holdeman Moore LV (1986) Genus Eubacterium Prévot 1938 294AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1353–1373

    Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1985) Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12

    Google Scholar 

  • Pang H, Zhang P, Duan CJ, Mo XC, Tang JL, Feng JX (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol 58:404–408

    Article  CAS  PubMed  Google Scholar 

  • Pottkämper J, Barthen P, Ilmberger N, Schwaneberg U, Schenk A, Schulte M, Tgnatiev N, Streit WR (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chem 11:957–965

    Article  Google Scholar 

  • Ramesh K, Richa S, Hena D, Som D, Arvind G (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57:503–507

    Article  Google Scholar 

  • Rees HC, Grant S, Jones B, Grant WD, Heaphy S (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7:415–421

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbial Biotechnol 85:265–276

    Article  CAS  Google Scholar 

  • Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69:6235–6242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36

    Article  CAS  PubMed  Google Scholar 

  • Wagschal K, Heng C, Lee CC, Wong DW (2009) Biochemical characterization of a novel dual-function arabinofuranosidase/xylosidase isolated from a compost starter mixture. Appl Microbiol Biotechnol 81(5):855–863

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li F, Chen G, Liu W (2009) Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol Res 164:650–657

    Article  CAS  PubMed  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  PubMed  Google Scholar 

  • Xiong JS, Vanney MB, Xie ZP, Schultze M, Kondorosi A, Kondorosi E, Staehelinl C (2007) Molecular cloning of a bifunctional beta-xylosidase/alpha-l-arabinosidase from alfalfa roots: heterologous expression in Medicago truncatula and substrate specificity of the purified enzyme. J Exp Bot 58:2799–2810

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Bao L, Chang L, Zhou Y, Lu H (2012) Biochemical and kinetic characterization of GH43 β-d-xylosidase/α-l-arabinofuranosidase and GH30 α-l-arabinofuranosidase/β-d-xylosidase from rumen metagenome. J Ind Microbiol Biotechnol 39:143–152

    Article  CAS  PubMed  Google Scholar 

  • Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse compositions. Appl Environ Microbiol 71:2347–2354

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Biofuel Cluster of Khon Kaen University. The authors thank the KKU Publication Clinic for providing professional editing service from American Journal Experts. We would also like to thank Dr. Piyanun Harnpicharnchai for the critical discussions and Miss Rinrapee Ngamsaeng and Miss Charinthip Suksart for the technical assistance. We are also grateful to the Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, Thailand, for the additional laboratory supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atcha Boonmee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sae-Lee, R., Boonmee, A. Newly derived GH43 gene from compost metagenome showing dual xylanase and cellulase activities. Folia Microbiol 59, 409–417 (2014). https://doi.org/10.1007/s12223-014-0313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-014-0313-7

Keywords

Navigation