Skip to main content
Log in

Nanofiber Induced Silk Fibroin Nanofiber/Silk Fibroin (SFNF/SF) Fibrous Scaffolds for 3D Cell Culture

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Fibrous 3D scaffold with small fiber diameter has the similar topographic and structural characteristics of native extracellular matrix (ECM), which provides the beneficial microenvironment for cell adhesion, growth, migration, proliferation. However, the pore structure of the biopolymer scaffold is crucial for cell regulation and tissue regeneration in practical application. In this report, we proposed a nanofiber induced silk fibroin nanofibers/silk fibroin (SFNF/SF) fibrous scaffold with homogeneous micron pores using fast freeze-drying technology under − 196 °C. The physical, chemical and biological performance of the scaffold was investigated. Ethanol post treatment of the scaffold led to the conformation transition of silk fibroin from random coil (silk I) to beta-sheet (silk II) and increase of the crystallinity of the scaffold, which greatly improved the stability of the scaffold in water. Scaffolds made from 2 to 6% SFNF/SF solution with SFNF/SF ratio ranging from 1:1 to 1:8 exhibited three dimensional (3D) fibrous structure with porosity of 80–85% and pore size ranging from 5 to 15 μm due to the entanglement of the nanofibers. And the fibrous structure of the scaffolds can be adjusted by controlling the concentration of the SFNF/SF solution and the SFNF/SF ratio. Cell culture suggested that the 3D fibrous network structure with micron pores showed advantages for cell migration comparing with the lamella structure scaffold. After 7 day’s culture, cells migrated to about 240 μm inside the 6% 1:1 scaffold, while only about 160 μm inside the 6% 1:16 scaffold. The nanofiber induced micro porous SFNF/SF scaffolds by fast freeze-drying technology is potential for preparation of micron porous scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Gou, D. Xie, Y. Ma, Y. Huang, F. Dai, C. Wang, B. Xiao, A.C.S. Biomater, Sci. Eng. 6, 1052 (2020)

    CAS  Google Scholar 

  2. M. Saleem, S. Rasheed, C. Yougen, Sci. Technol. Adv. Mat. 21, 242 (2020)

    CAS  Google Scholar 

  3. H. You, Q. Zhang, S. Yan, R. You, Fiber. Polym. 22, 2972 (2021)

    CAS  Google Scholar 

  4. W. Zhang, Y. Zheng, H. Liu, X. Zhu, Y. Gu, Y. Lan, J. Tan, H. Xu, R. Guo, Mat. Sci. Eng. C 103, 109736 (2019)

    CAS  Google Scholar 

  5. S. Peng, G. Jin, L. Li, K. Li, M. Srinivasan, S. Ramakrishna, J. Chen, Chem. Soc. Rev. 45, 1225 (2016)

    CAS  PubMed  Google Scholar 

  6. W. Lin, M. Chen, T. Qu, J. Li, Y. Man, J. Biomed. Mater. Res. B 108, 1311 (2020)

    CAS  Google Scholar 

  7. W. Sun, D.A. Gregory, M.A. Tomeh, X. Zhao, Int. J. Mol. Sci. 22, 1499 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. E. Govorčin Bajsić, E. Zdraveva, T. Holjevac Grgurić, I. Slivac, M. Tominac Trcin, N. Mrkonjić, S. Kuzmić, T. Dolenec, I. Vrgoč Zimić, B. Mijović, Chem. Biochem. Eng. Q 35, 31 (2021)

    Google Scholar 

  9. S. Lin, G. Lu, S. Liu, S. Bai, X. Liu, Q. Lu, B. Zuo, D.L. Kaplan, H. Zhu, J. Mater. Chem. B 2, 2622 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. T.D.H. Le, V. Liaudanskaya, W. Bonani, C. Migliaresi, A. Motta, J. Tissue. Eng. Regen. M. 12, 89 (2018)

    CAS  Google Scholar 

  11. Y. Tian, Q. Wu, F. Li, Y. Zhou, D. Huang, R. Xie, X. Wang, Z. Zheng, G. Li, Coll. Surface. B 208, 112080 (2021)

    CAS  Google Scholar 

  12. J. Fan, M.-Y. Yu, T.-D. Lei, Y.-H. Wang, F.-Y. Cao, X. Qin, Y. Liu, Tissue. Eng. Regen. Med. 15, 145 (2018)

    PubMed  PubMed Central  Google Scholar 

  13. B.B. Mandal, S.C. Kundu, Biomaterials 30, 2956 (2009)

    CAS  PubMed  Google Scholar 

  14. X. Yao, S. Zou, S. Fan, Q. Niu, Y. Zhang, Mater. Today Bio 16, 100381 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. C. Ai, L. Liu, J.C.-H. Goh, Mat. Sci. Eng. C 124, 112088 (2021)

    CAS  Google Scholar 

  16. G.T. Christopherson, H. Song, H.-Q. Mao, Biomaterials 30, 556 (2009)

    CAS  PubMed  Google Scholar 

  17. M. Rahmati, D.K. Mills, A.M. Urbanska, M.R. Saeb, J.R. Venugopal, S. Ramakrishna, M. Mozafari, Prog. Mater. Sci. 117, 100721 (2021)

    CAS  Google Scholar 

  18. S. Wu, W. Zhao, M. Sun, P. He, H. Lv, Q. Wang, S. Zhang, Q. Wu, P. Ling, S. Chen, J. Ma, Appl. Mater. Today 28, 101542 (2022)

    Google Scholar 

  19. S. Wu, T. Dong, Y. Li, M. Sun, Y. Qi, J. Liu, M.A. Kuss, S. Chen, B. Duan, Appl. Mater. Today 27, 101473 (2022)

    PubMed  PubMed Central  Google Scholar 

  20. Y. Li, T. Dong, Z. Li, S. Ni, F. Zhou, O.A. Alimi, S. Chen, B. Duan, M. Kuss, S. Wu, Mater. Today Chem. 24, 100944 (2022)

    Google Scholar 

  21. K. Sisson, C. Zhang, M.C. Farach-Carson, D.B. Chase, J.F. Rabolt, J. Biomed. Mater. Res. A 94A, 1312 (2010)

    CAS  Google Scholar 

  22. Y. Wu, L. Zhou, Y. Li, X. Lou, J. Biomed. Mater. Res. A 110, 525 (2022)

    CAS  PubMed  Google Scholar 

  23. Y. Chen, Z. Jia, M. Shafiq, X. Xie, X. Xiao, R. Castro, J. Rodrigues, J. Wu, G. Zhou, X. Mo, Colloid. Surface. B 201, 111637 (2021)

    CAS  Google Scholar 

  24. K. Zhang, X. Bai, Z. Yuan, X. Cao, X. Jiao, Y. Li, Y. Qin, Y. Wen, X. Zhang, Biomaterials 204, 70 (2019)

    CAS  PubMed  Google Scholar 

  25. L. Huang, J. Huang, H. Shao, X. Hu, C. Cao, S. Fan, L. Song, Y. Zhang, Mat. Sci. Eng. C 94, 179 (2019)

    CAS  Google Scholar 

  26. J. Xiao, W. Lv, Y. Song, Q. Zheng, Chem. Eng. J. 338, 202 (2018)

    CAS  Google Scholar 

  27. Y. Si, X. Wang, C. Yan, L. Yang, J. Yu, B. Ding, Adv. Mater. 28, 9512 (2016)

    CAS  PubMed  Google Scholar 

  28. X. Zhao, F. Yang, Z. Wang, P. Ma, W. Dong, H. Hou, W. Fan, T. Liu, Compos. Part B: Eng. 182, 107624 (2020)

    CAS  Google Scholar 

  29. X. Li, R. You, Z. Luo, G. Chen, M. Li, J. Mater. Chem. B 4, 2903 (2016)

    CAS  PubMed  Google Scholar 

  30. M. Zhu, K. Wang, J. Mei, C. Li, J. Zhang, W. Zheng, D. An, N. Xiao, Q. Zhao, D. Kong, L. Wang, Acta Biomater. 10, 2014 (2014)

    CAS  PubMed  Google Scholar 

  31. L. Du, W. Li, Z. Jiang, L. Wang, D. Kong, B. Xu, M. Zhu, Mater. Lett. 236, 1 (2019)

    CAS  Google Scholar 

  32. Z.-Y. Meng, L. Wang, L.-Y. Shen, Z.-H. Li, Z. Zhao, X.-Y. Wang, J. Appl. Polym. Sci. 138, 51421 (2021)

    CAS  Google Scholar 

  33. H. Dou, B. Zuo, J. Text. I 106, 311 (2015)

    CAS  Google Scholar 

  34. K. Kaewprasit, T. Kobayashi, S. Damrongsakkul, J. Appl. Polym. Sci. 137, 48731 (2020)

    CAS  Google Scholar 

  35. S. Kaewpirom, S. Boonsang, RSC Adv. 10, 15913 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. X. Chen, Z. Shao, N.S. Marinkovic, L.M. Miller, P. Zhou, M.R. Chance, Biophys. Chem. 89, 25 (2001)

    CAS  PubMed  Google Scholar 

  37. L. Fan, H. Wang, K. Zhang, C. He, Z. Cai, X. Mo, J. Biomat. Sci. Polym. E 23, 497 (2012)

    CAS  Google Scholar 

  38. Z. Zhao, A. Chen, Y. Li, J. Hu, X. Liu, J. Li, Y. Zhang, G. Li, Z. Zheng, J. Nanopart. Res. 14, 736 (2012)

    Google Scholar 

  39. A. Bharadwaz, A.C. Jayasuriya, Mat. Sci. Eng. C 110, 110698 (2020)

    CAS  Google Scholar 

  40. M. Gu, S. Fan, G. Zhou, K. Ma, X. Yao, Y. Zhang, Compos. Part B 235, 109764 (2022)

    CAS  Google Scholar 

  41. J. Chen, A. Zhuang, H. Shao, X. Hu, Y. Zhang, J. Mater. Chem. B 5, 3640 (2017)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work is supported by Scientific Research Project of Tianjin Municipal Education Commission (No. 2019ZD01) and the Industry-University Cooperative Education Program of the Ministry of Education (No.BINTECH-KJZX-20220831-22). We would like to thank to the Analytical & Testing Center of Tiangong University for emission scanning electron microscopy, Fourier Transform Infrared spectroscopy, X-ray diffraction analysis work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Fan or Yong Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Lei, T., Zhang, Y. et al. Nanofiber Induced Silk Fibroin Nanofiber/Silk Fibroin (SFNF/SF) Fibrous Scaffolds for 3D Cell Culture. Fibers Polym 24, 433–444 (2023). https://doi.org/10.1007/s12221-023-00113-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00113-y

Keywords

Navigation