Skip to main content
Log in

Fabrication of silk fibroin based three dimensional scaffolds for tissue engineering

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Herein we report successful synthesis of silk fibroin (SF) three dimensional scaffolds (SF 3D-scaffold) from SF sponge and SF nanofibers. Both the nanofibers and sponge were prepared from Bombyx mori fibroin. The SF 3D-scaffold was prepared by electrospinning the fibroin nanofibers over the sponge. Surface morphology was determined by scanning electron microscopy (SEM), while nanofiber diameter and pore size were measured using imageJ software. Effect of spinning time on the pore size and cell adhesion was determined. Average diameter of the SF nanofibers was measured to be 320 nm and pore size was found to reduce with increasing spinning time, such that, for 1 h spinning time pore size was 231 µm and the same for 3.5 h was 4.1 µm. However, the number of pores increased with spinning time. The results confirmed adhesion of MC3T3-E1 cells on the SF sponge, SF nanofibers and SF three dimensional scaffolds. Higher cell adhesion was found on the three dimensional scaffold in comparison to the nanofibers and sponge, possibly due to highly porous structure with very small and numerous pores in the resultant composite; hence more cell adhesion sites. The cell adhesion result confirmed biocompatibility of the SF 3D-scaffold and hence its suitability for applications in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi, and T. Okano, Prog. Polym. Sci., 32, 1123 (2007).

    Article  CAS  Google Scholar 

  2. Y. Tamada, Biomacromolecules, 6, 3100 (2005).

    Article  CAS  Google Scholar 

  3. B.-M. Min, G. Lee, S. H. Kim, Y. S. Nam, and T. S. Lee, Biomaterials, 25, 1289 (2004).

    Article  CAS  Google Scholar 

  4. P. A. L. Lima, C. X. Resende, G. D. de Almeida Soares, K. Anselme, and L. E. Almeida, Mater. Sci. Eng. C, 33, 3389 (2013).

    Article  CAS  Google Scholar 

  5. J. K. Hong, J. Yun, H. Kim, and S.-M. Kwon, J. Tissue. Eng. Regen. Med., 12, 211 (2015).

    Article  CAS  Google Scholar 

  6. F. Zhang, B. Zuo, Z. Fan, Z. Xie, Q. Lu, X. Zhang, and D. L. Kaplan, Biomacromolecules, 13, 798 (2012).

    Article  CAS  Google Scholar 

  7. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Polymer, 44, 5721 (2003).

    Article  CAS  Google Scholar 

  8. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003).

    Article  CAS  Google Scholar 

  9. Z. Khatri, R. A. Arain, A. W. Jatoi, M. Gopiraman, K. Wei, and I.-S. Kim, Cellulose, 20, 1469 (2013).

    Article  CAS  Google Scholar 

  10. M. Gopiraman, H. Bang, G. Yuan, C. Yin, K. H. Song, J. S. Lee, I. M. Chung, K. Ramasamy, and I. S. Kim, Carbohydr. Lett., 132, 554 (2015).

    Article  CAS  Google Scholar 

  11. Z. Khatri, S. Ali, I. Khatri, M. Gopiraman, S. H. Kim, and I.-S. Kim, Appl. Surf. Sci., 342, 64 (2015).

    Article  CAS  Google Scholar 

  12. K. Yoon, B. S. Hsiao, and B. Chu, J. Mater. Chem., 18, 5326 (2008).

    Article  CAS  Google Scholar 

  13. G.-Z. Jin and H.-W. Kim, J. Tissue. Eng. Regen. Med., 11 (2014).

  14. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin, Nano Lett., 3, 213 (2003).

    Article  CAS  Google Scholar 

  15. G. H. Altman, H. Gregory, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).

    Article  CAS  Google Scholar 

  16. M. H. Sakamoto, I. Kai, W. M. Miyamoto, P. T. W. Isshiki, and E. R. Plant, Fiber J., 45, 487 (1989).

    Article  Google Scholar 

  17. W. H. Park, W. S. Ha, H. Ito, T. Miyamoto, H. Inagaki, and Y. Noishiki, Fiber. Polym., 2, 58 (2001).

    Article  CAS  Google Scholar 

  18. M. Santin, A. Motta, G. Freddi, and M. Cannas, J. Biomed. Mater. Res. Part A, 46, 382 (1999).

    Article  CAS  Google Scholar 

  19. S. Sangkert, J. Meesane, S. Kamonmattayakul, and W. L. Chai, Mater. Sci. Eng. C-Mater. Biol. Appl., 58, 1138 (2016).

    Article  CAS  Google Scholar 

  20. S. Kar, S. Talukdar, S. Pal, S. Nayak, P. Paranjape, and S. C. Kundu, J. Tissue. Eng. Regen. Med., 10, 200 (2013).

    Article  CAS  Google Scholar 

  21. J. L. Hanawa, W. Atsushi, T. T. Yuki, K. L. Ikoma, H. Masato, and C. Sugihara, Chem. Pharm. Bull., 43, 881 (1995).

    Article  Google Scholar 

  22. A. Sugihara, K. Sugiura, H. Morita, T. Ninagawa, K. Tubouchi, R. Tobe, M. Izumiya, T. Horio, N. G. Abraham, and S. Ikehara, Exp. Biol. Med., 225, 1 (2000).

    Article  Google Scholar 

  23. S. Fuchs, X. Jiang, H. Schmidt, E. Dohle, S. Ghanaati, C. Orth, A. Hofmann, A. Motta, C. Migliaresi, and C. J. Kirkpatrick, Biomaterials, 30, 1255 (2009).

    Article  Google Scholar 

  24. S. Enomoto, M. Sumi, K. Kajimoto, Y. Nakazawa, R. Takahashi, C. Takabayashi, T. Asakura, and M. Sata, J. Vasc. Surg., 51, 155 (2010).

    Article  Google Scholar 

  25. K. H. Lee, C. S. Ki, D. H. Baek, G. D. Kang, D.-W. Ihm, and Y. H. Park, Fiber. Polym., 6, 259 (2005).

    Article  Google Scholar 

  26. P. DeMuth, M. Hurley, C. Wu, S. Galanie, M. R. Zachariah, and P. DeShong, Microporous Mesoporous Mat., 141, 1 (2011).

    Article  Google Scholar 

  27. J. Ming, M. Li, Y. Han, Y. Chen, H. Li, B. Zuo, and F. Pan, Mater. Sci. Eng. C-Mater. Biol. Appl., 59, 185 (2016).

    Article  CAS  Google Scholar 

  28. Y. Lu, H. Lin, Y. Chen, C. Wang, and Y. Hua, Fiber. Polym., 8, 564 (2007).

    Article  Google Scholar 

  29. K. Cai, K. Yao, Y. Cui, Z. Yang, X. Li, H. Xie, T. Qing, and L. Gao, Biomaterials, 23, 1553 (2002).

    Article  Google Scholar 

  30. Q. Zhang, S. Yan, M. Li, and J. Wang, Fiber. Polym., 15, 1017 (2014).

    Article  Google Scholar 

  31. T.-H. Liou, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 364, 66 (2004).

    Article  Google Scholar 

  32. Q. Lu, X. Wang, S. Lu, M. Li, D.-L. Kaplan, and H. Zhu, Biomaterials, 32, 3988 (2011).

    Article  Google Scholar 

  33. W. D. Marner, A. S. Shaikh, S. J. Muller, and J. D. Keasling, Biomacromolecules, 9, 1 (2008).

    Article  CAS  Google Scholar 

  34. Q. Lu, Z. Xiaohui, X. Hu, and D. L. Kaplan, Macromol. Biosci., 10, 433 (2010).

    Article  Google Scholar 

  35. Q. Lu, Q. Feng, K. Hu, and F. Cui, J. Mater. Sci. Mater. Med., 19, 1745 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Gopiraman or I.-S. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Jatoi, A.W., Bang, H. et al. Fabrication of silk fibroin based three dimensional scaffolds for tissue engineering. Fibers Polym 17, 1140–1145 (2016). https://doi.org/10.1007/s12221-016-5852-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5852-x

Keywords

Navigation