Skip to main content
Log in

Successive Chemical Modification of Poly(acrylonitrile) Fibers with Glycidyl Methacrylate and Poly(p-phenylenediamine)/Ag Particles for an Efficient Antibacterial Activity

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

One of the most industrially-prominent fibers, polyacrylonitrile (PAN), was chemically modified with the two specific steps to gain new functional groups that enable the surface chemically attractive. First, the chemically-susceptible epoxy groups were introduced to the PAN through graft copolymerization of glycidyl methacrylate using benzoyl peroxide (Bz2O2) as an initiator. Secondly, the surface of GMA grafted-PAN fibers (PAN-g-GMA) was decorated by the poly(p-phenylenediamine) (PFDA) and Ag nanoparticles through the in-situ oxidative polymerization of p-phenylenediamine (p-FDA) using AgNO3. The changes in the PAN fiber’s weights were monitored by changing the experimental conditions such as Bz2O2 and GMA concentrations, polymerization temperature-time, and AgNO3/p-FDA mol ratio. The usage of 5×10−3 M of Bz2O2 and 0.5 M of GMA at 85 °C for 1 h ensured over 95 % of GMA graft yields to the PAN-g-GMA fibers. Structural, thermal, and morphological changes that occurred in the PAN fiber were examined in detail using ATR-FTIR, XRD, TGA, Optical Microscope, and SEM techniques, respectively. A grey metallic shine was detected by optic microscopy on the composite surface after the PFDA/Ag nanoparticles deposition. Finally, the antibacterial activity performance of the Ag particles anchored-composite fiber was determined against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by the zone inhibition test. The Ag particles decorated-composite showed high antibacterial activity, especially against E. coli (16.5 cm inhibition) compared to Ag-unloaded one. A suitable methodology was presented to develop a fiber composite that will potentially be used as an antibacterial textile in the various material preparation fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Deng, W. T. Yang, and B. Rånby, J. Appl. Polym. Sci., 77, 1513 (2000).

    Article  CAS  Google Scholar 

  2. I. Kaur, N. Sharma, and V. Kumari, J. Adv. Res., 4, 547 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. T. Amornsakchai and S. Pattarachindanuwong, J. Reinf. Plast. Comp., 29, 149 (2010).

    Article  CAS  Google Scholar 

  4. G. Dorez, B. Otazaghine, A. Taguet, L. Ferry, and J.-M. Lopez-Cuesta, Polym. Int., 63, 1665 (2014).

    Article  CAS  Google Scholar 

  5. Y. Ren, T. Huo, and Y. Qin, Fire Mater., 42, 925 (2018).

    Article  CAS  Google Scholar 

  6. L. Song, Q. Ouyang, X. Huang, H. Ma, P. Chen, L. Shen, and X. Wang, Fiber. Polym., 22, 240 (2021).

    Article  CAS  Google Scholar 

  7. M. Abdouss, A. Mousavi Shoushtari, A. Majidi Simakani, S. Akbari, and A. Haji, Desaline. Water Treat., 52, 7133 (2014).

    Article  CAS  Google Scholar 

  8. M. Saçak and E. Pulat, J. Appl. Polym. Sci., 38, 539 (1989).

    Article  Google Scholar 

  9. Z. Jia and S. Du, Fiber. Polym., 7, 235 (2006).

    Article  Google Scholar 

  10. S. Kutanis, M. Karakişla, U. Akbulut, and M. Saçak, Compos. Part A Appl. Sci. Manuf., 38, 609 (2007).

    Article  Google Scholar 

  11. C. B. Turay, M. Kalkan Erdoğan, M. Karakişla, and M. Saçak, J. Ind. Text., 46, 1104 (2016).

    Article  CAS  Google Scholar 

  12. M. K. Erdoğan, M. Karakişla, and M. Saçak, Turk. J. Chem., 44, 775 (2020).

    Article  Google Scholar 

  13. I. M. El-Nahhal, S. M. Zourab, F. S. Kodeh, M. Selmane, I. Genois, and F. Babonneau, Int. Nano Lett., 2, 14 (2012).

    Article  Google Scholar 

  14. H. Barani, New J. Chem., 38, 4365 (2014).

    Article  CAS  Google Scholar 

  15. Y. Lu and L. Xue, Compos. Sci. Technol., 72, 828 (2012).

    Article  CAS  Google Scholar 

  16. M. Kalkan Erdoğan, M. Karakişla and M. Saçak, Polym. Compos., 39, E358 (2018).

    Article  Google Scholar 

  17. M. Kalkan Erdoğan, M. Karakişla, and M. Saçak, J. Compos. Mater., 52, 1353 (2018).

    Article  Google Scholar 

  18. P. Saini, V. Choudhary, N. Vijayan, and R. K. Kotnala, J. Phys. Chem. C, 116, 13403 (2012).

    Article  CAS  Google Scholar 

  19. P. Bhardwaj and A. N. Grace, Diam. Relat. Mat., 106, 107871 (2020).

    Article  CAS  Google Scholar 

  20. D. S. Morais, R. M. Guedes, and M. A. Lopes, Materials, 9, 498 (2016).

    Article  PubMed Central  Google Scholar 

  21. G. Sun, X. Xu, J. R. Bickett, and J. F. Williams, Ind. Eng. Chem. Res., 40, 1016 (2001).

    Article  CAS  Google Scholar 

  22. Y.-A. Son and G. Sun, J. Appl. Polym. Sci., 90, 2194 (2003).

    Article  CAS  Google Scholar 

  23. H. Lee, S. Y. Yeo, and S. H. Jeong, J. Mater Sci., 38, 2199 (2003).

    Article  CAS  Google Scholar 

  24. Z. Gün Gök, K. Günay, M. Arslan, M. Yiğitoğlu, and İ. Vargel, Polym. Bull., 77, 1649 (2020).

    Article  Google Scholar 

  25. Z. Gün Gök, A. Demiral, O. Bozkaya, and M. Yiğitoğlu, Polym. Bull., doi: https://doi.org/10.1007/s00289-020-03486-9 (2020).

  26. A. Yadav, V. Prasad, A. A. Kathe, S. Raj, D. Yadav, C. Sundaramoorthy, and N. Vigneshwaran, Bull. Mater. Sci., 29, 641 (2006).

    Article  CAS  Google Scholar 

  27. M. K. Erdoğan, M. Karakişla and M. Saçak, Mater. Chem. Phys., 225, 72 (2019).

    Article  Google Scholar 

  28. M. K. Erdoğan and M. Karakişla, J. Turkish Chem. Soc., 6, 225 (2019).

    Google Scholar 

  29. A. V. Reis, A. R. Fajardo, I. T. Schuquel, M. R. Guilherme, G. J. Vidotti, A. F. Rubira, and E. C. Muniz, J. Org. Chem., 74, 3750 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Y. Ren, Y. Qin, X. Liu, T. Huo, L. Jiang, and T. Tian, J. Appl. Polym. Sci., 135, 46752 (2018).

    Article  Google Scholar 

  31. Y. Chen, K. G. Neoh, and K. L. Tan, Macromolecules, 34, 3133 (2001).

    Article  CAS  Google Scholar 

  32. N. Seko, N. T. Y. Ninh, and M. Tamada, Radiat. Phys. Chem., 79, 22 (2010).

    Article  CAS  Google Scholar 

  33. O. M. Jazani, H. Rastin, K. Formela, A. Hejna, M. Shahbazi, B. Farkiani, and M. R. Saeb, Polym. Bull., 74, 4483 (2017).

    Article  CAS  Google Scholar 

  34. K. Neoh, E. Kang, and K. Tan, J. Phys. Chem., 96, 6777 (1992).

    Article  CAS  Google Scholar 

  35. S. Mu, C. Chen, and J. Wang, Synth. Met., 88, 249 (1997).

    Article  CAS  Google Scholar 

  36. P. Bober, J. Stejskal, M. Trchová, J. Prokeš, and I. Sapurina, Macromolecules, 43, 10406 (2010).

    Article  CAS  Google Scholar 

  37. A. A. Durgaryan, R. A. Arakelyan, and N. A. Durgaryan, Russ. J. Gen. Chem., 84, 1095 (2014).

    Article  CAS  Google Scholar 

  38. D. Ichinohe, N. Saitoh, and H. Kise, Macromol. Chem. Phys., 199, 1241 (1998).

    Article  CAS  Google Scholar 

  39. E. Griškonis, A. Ilginis, I. Jonuškienė, L. Raslavičius, R. Jonynas, and K. Kantminienė, Processes, 8, 939 (2020).

    Article  Google Scholar 

  40. L. M. Samyn, R. S. Babu, M. Devendiran, and A. L. F. de Barros, Ionics, 26, 3041 (2020).

    Article  CAS  Google Scholar 

  41. G. Ćirić-Marjanović, B. Marjanović, P. Bober, Z. Rozlívková, J. Stejskal, M. Trchová, and J. Prokeš, J. Polym. Sci. Part A Polym. Chem., 49, 3387 (2011).

    Article  Google Scholar 

  42. T. Sulimenko, J. Stejskal, and J. Prokeš, J. Colloid Interface Sci., 236, 328 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. H. Tang, A. Kitani, S. Maitani, H. Munemura, and M. Shiotani, Electrochim. Acta, 40, 849 (1995).

    Article  CAS  Google Scholar 

  44. L. Duić, M. Kraljić, and S. Grigić, J. Polym. Sci. Part A Polym. Chem., 42, 1599 (2004).

    Article  Google Scholar 

  45. H. K. Trang, L. Jiang, and R. K. Marcus, J. Chromat. B, 1110–1111, 144 (2019).

    Article  Google Scholar 

  46. P. Kale, H. Lokhande, K. Rao, and M. Rao, J. Appl. Polym. Sci., 19, 461 (1975).

    Article  CAS  Google Scholar 

  47. Y. Ren, Y. Gu, Q. Zeng, and Y. Zhang, Eur. Polym. J., 94, 1 (2017).

    Article  CAS  Google Scholar 

  48. G. S. Chauhan, L. Guleria, and R. Sharma, Cellulose, 12, 97 (2005).

    Article  CAS  Google Scholar 

  49. C. Makhlouf, S. Marais, and S. Roudesli, Appl. Surf. Sci., 253, 5521 (2007).

    Article  CAS  Google Scholar 

  50. M. Celik and M. Sacak, J. Appl. Polym. Sci., 59, 609 (1996).

    Article  CAS  Google Scholar 

  51. M. Ćelik, M. L. Qudrat, E. Akyüz, and L. Açik, Fiber. Polym., 13, 145 (2012).

    Article  Google Scholar 

  52. A. R. Bagheri, M. Abdouss, and A. M. Shoushtari, Materialwissenschaft und Werkstofftechnik, 40, 842 (2009).

    Article  CAS  Google Scholar 

  53. T. M. Ting, M. M. Nasef, and P. Sithambaranathan, J. Radioanal. Nucl. Chem., 311, 843 (2017).

    Article  CAS  Google Scholar 

  54. A. Pron, F. Genoud, C. Menardo, and M. Nechtschein, Synth. Met., 24, 193 (1988).

    Article  CAS  Google Scholar 

  55. F. Cataldo, Eur. Polym. J., 32, 43 (1996).

    Article  CAS  Google Scholar 

  56. G. Crispim-Edson, F. Piai Juliana, T. A. Schüquel Ivânia, F. Rubira Adley, and C. Muniz Edvani, e-polymers, 6, 62 (2006).

    Google Scholar 

  57. H. H. Sokker, S. M. Badawy, E. M. Zayed, F. A. Nour Eldien, and A. M. Farag, J. Hazard. Mater., 168, 137 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. L. Bellamy, “The Infra-red Spectra of Complex Molecules”, Springer Science & Business Media, 2013.

  59. H. K. No, N. Y. Park, S. H. Lee, and S. P. Meyers, Int. J. Food Microbiol., 74, 65 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. L.-Y. Zheng and J.-F. Zhu, Carbohyd. Polym., 54, 527 (2003).

    Article  CAS  Google Scholar 

  61. M. R. Gizdavic-Nikolaidis, J. Bennett, Z. Zujovic, S. Swift, and G. A. Bowmaker, Synth. Met., 162, 1114 (2012).

    Article  CAS  Google Scholar 

  62. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman, Nanotechnology, 16, 2346 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. S. H. Jeong, Y. H. Hwang, and S. C. Yi, J. Mater. Sci., 40, 5413 (2005).

    Article  CAS  Google Scholar 

  64. T. Yang, N. Li, X. Wang, J. Zhai, B. Hu, M. Chen, and J. Wang, Chin. Chem. Lett., 31, 145 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. Arzu Çöleri Cihan and Molecular Biology and Microbiology Research Laboratory, Department of Biology, Ankara University, for the antibacterial activity experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meral Karakışla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroğlu, N.S., Edoğan, M.K., Karakışla, M. et al. Successive Chemical Modification of Poly(acrylonitrile) Fibers with Glycidyl Methacrylate and Poly(p-phenylenediamine)/Ag Particles for an Efficient Antibacterial Activity. Fibers Polym 23, 589–600 (2022). https://doi.org/10.1007/s12221-022-3099-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-3099-2

Keywords

Navigation