Skip to main content

Advertisement

Log in

Electropolymerization of p-phenylenediamine films on carbon fiber fabrics electrode for flexible supercapacitors: surface and electrochemical characterizations

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Supercapacitors are considered as one of the most efficient and reliable approaches to fulfill the specifications of the energy storage devices, owing to high-efficiency storage of energy, which makes supercapacitive electrode materials provoke large curiosity. In this work, we report the electropolymerization of poly(p-phenylenediamine) (PpPD) films on lightweight and inexpensive flexible carbon fiber fabrics by potentiostatic technique. The ladder structure of the electrochemically prepared PpPD was examined by Fourier transform infrared spectroscopy (FTIR). The surface characteristics and elemental composition studies were performed through field-emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), which confirmed the polymerization on the carbon fabrics. The electrochemical behavior of the fabricated supercapacitors was investigated by electrochemical analysis including cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The electrodes presented a good capacitive retention in a sweep rate range between 5 and 100 mV s−1 using cyclic voltammetry. The coated electrode exhibited good electrochemical property with a high specific capacitance of 80 F g−1 at the current density of 1 A g−1. The high electrochemical performance is associated to the outstanding conductivity, high electrochemical stability, and superior flexibility of the carbon fiber fabrics. The accomplishment of such superior performance, lightweight, and mechanically flexible supercapacitor can stimulate the use in energy storage applications and wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sharma K, Pareek K, Rohan R, Kumar P (2019) Flexible supercapacitor based on three-dimensional cellulose/graphite/polyaniline composite. Int J Energy Res 43:604–611. https://doi.org/10.1002/er.4277

    Article  CAS  Google Scholar 

  2. Wen X, Dong T, Liu A, Zheng S, Chen S, Han Y, Zhang S (2018) A new solid-state electrolyte based on polymeric ionic liquid for high-performance supercapacitor. Ionics 25:1–11. https://doi.org/10.1007/s11581-018-2582-7

    Article  CAS  Google Scholar 

  3. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Mat Dev 1:225–255. https://doi.org/10.1016/j.jsamd.2016.08.001

    Article  Google Scholar 

  4. Babu RS, de Barros ALF, de Almeida MM, da Motta SD, Balamurugan J, Lee JH (2018) Novel polyaniline/manganese hexacyanoferrate nanoparticles on carbon fiber as binder-free electrode for flexible supercapacitors. Compos Part B: Eng 143:141–147. https://doi.org/10.1016/j.compositesb.2018.02.007

    Article  CAS  Google Scholar 

  5. Guo J, Zhang Q, Sun J, Li C, Zhao J, Zhou Z, Zhang J (2018) Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors. J Power Sources 382:122–127. https://doi.org/10.1016/j.jpowsour.2018.02.034

    Article  CAS  Google Scholar 

  6. Li Q, Zhang Q, Sun J, Liu C, Guo J, He B, Yao Y (2019) All hierarchical core–shell heterostructures as novel binder-free electrode materials for ultrahigh-energy-density wearable asymmetric supercapacitors. Adv Sci 6:1801379. https://doi.org/10.1002/advs.201801379

    Article  CAS  Google Scholar 

  7. Zhou Z, Zhang Q, Sun J, He B, Guo J, Li Q, Yao Y (2018) Metal–organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 12:9333–9341. https://doi.org/10.1021/acsnano.8b04336

    Article  CAS  PubMed  Google Scholar 

  8. Bavio MA, Acosta GG, Kessler T (2015) Energy storage in symmetric and asymmetric supercapacitors based in carbon cloth/polyaniline-carbon black nanocomposites. Int J Energy Res 39:2053–2061. https://doi.org/10.1002/er.3441

    Article  CAS  Google Scholar 

  9. Yuksel R, Unalan HE (2015) Textile supercapacitors-based on MnO2/SWNT/conducting polymer ternary composites. Int J Energy Res 39:2042–2052. https://doi.org/10.1002/er.3439

    Article  CAS  Google Scholar 

  10. Ng CH, Lim HN, Lim YS, Chee WK, Huang NM (2015) Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int J Energy Res 39:344–355. https://doi.org/10.1002/er.3247

    Article  CAS  Google Scholar 

  11. Kim WJ, Ko TH, Seo MK, Chung YS, Kim HY, Kim BS (2018) Engineered carbon fiber papers as flexible binder-free electrodes for high-performance capacitive energy storage. J Ind Eng Chem 59:277–285. https://doi.org/10.1016/j.jiec.2017.10.033

    Article  CAS  Google Scholar 

  12. Li L, Lou Z, Chen D, Jiang K, Han W, Shen G (2018) Recent advances in flexible/stretchable supercapacitors for wearable electronics. Small 14:1702829. https://doi.org/10.1002/smll.201702829

    Article  CAS  Google Scholar 

  13. Maier MA, Babu RS, Sampaio DM, de Barros ALF (2017) Binder-free polyaniline interconnected metal hexacyanoferrates nanocomposites (metal = Ni, Co) on carbon fibers for flexible supercapacitors. J Mater Sci Mater Electron 28:17405–17413. https://doi.org/10.1007/s10854-017-7674-z

    Article  CAS  Google Scholar 

  14. Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z, Wang ZL (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28:98–105. https://doi.org/10.1002/adma.201504403

    Article  CAS  PubMed  Google Scholar 

  15. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107. https://doi.org/10.1016/j.jpowsour.2017.02.054

    Article  CAS  Google Scholar 

  16. Lakard B, Herlem G, Lakard S, Fahys B (2003) Ab initio study of the polymerization mechanism of poly(p-phenylenediamine). J Mol Struc-THEOCHEM 638:177–187. https://doi.org/10.1016/S0166-1280(03)00567-0

    Article  CAS  Google Scholar 

  17. Zhou SX, Tao XY, Ma J, Qu CH, Zhou Y, Guo LT, Feng PZ, Zhu YB, Wei XY (2017) Facile synthesis of self-assembled polyaniline nanorods doped with sulphuric acid for high-performance supercapacitors. Vacuum 143:63–70. https://doi.org/10.1016/j.vacuum.2017.05.028

    Article  CAS  Google Scholar 

  18. Qian PF, Li T, Liang BL, Qin ZY (2017) Polyaniline nanofibers prepared with binary oxidant at the presence of para-phenylenediamine. Mater Sci Forum 898:2354–2359. https://doi.org/10.4028/www.scientific.net/MSF.898.2354

    Article  Google Scholar 

  19. Pham QL, Haldorai Y, Nguyen VH, Tuma D, Shim JJ (2011) Facile synthesis of poly (p-phenylenediamine)/MWCNT nanocomposites and characterization for investigation of structural effects of carbon nanotubes. Bull Mater Sci 34:37–43. https://doi.org/10.1007/s12034-011-0049-9

    Article  CAS  Google Scholar 

  20. Li XG, Huang MR, Duan W, Yang YL (2002) Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem Rev 102:2925–3030. https://doi.org/10.1021/cr010423z

    Article  CAS  PubMed  Google Scholar 

  21. Wang M, Zhang H, Wang C, Hu X, Wang G (2013) Direct electrosynthesis of poly-o-phenylenediamine bulk materials for supercapacitor application. Electrochim Acta 91:144–151. https://doi.org/10.1016/j.electacta.2012.12.087

    Article  CAS  Google Scholar 

  22. Bilal S, Holze R (2011) Spectroelectrochemistry of poly (o-phenylenediamine): polyaniline-like segments in the polymer structure. Electrochim Acta 56:3353–3358. https://doi.org/10.1016/j.electacta.2011.01.005

    Article  CAS  Google Scholar 

  23. Jaidev RS (2012) Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications. J Mater Chem 22:18775–18783. https://doi.org/10.1039/c2jm33627h

    Article  CAS  Google Scholar 

  24. Chen Y, Zhang X, Zhang H, Sun X, Zhang D, Ma Y (2012) High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation. RSC Adv 2:7747–7753. https://doi.org/10.1039/C2RA20667F

    Article  CAS  Google Scholar 

  25. Liu Z, Zhou H, Huang Z, Wang W, Zeng F, Kuang Y (2013) Graphene covalently functionalized with poly(p-phenylenediamine) as high performance electrode material for supercapacitors. J Mater Chem A 1:3454–3462. https://doi.org/10.1039/c3ta01162c

    Article  CAS  Google Scholar 

  26. Archana S, Jaya Shanthi R (2014) Synthesis and characterization of poly (p-phenylenediamine) in the presence of sodium dodecyl sulfate. Res J Chem Sci 4:60–67 ISSN 2231-606X

    Google Scholar 

  27. Wu J, Yu H, Fan L, Luo G, Lin J, Huang M (2012) A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor. J Mater Chem 22:19025–19030. https://doi.org/10.1039/C2JM33856D

    Article  CAS  Google Scholar 

  28. Yang CH, Wen TC (1994) Electrochemical copolymerization of aniline and para-phenylenediamine on IrO2-coated titanium electrode. J Appl Electrochem 24:166–178. https://doi.org/10.1007/BF00247789

    Article  CAS  Google Scholar 

  29. Chen W, Fan Z, Gu L, Bao X, Wang C (2010) Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chem Commun 46:3905–3907. https://doi.org/10.1039/C000517G

    Article  CAS  Google Scholar 

  30. Ortega PF, dos Santos Junior GA, Montoro LA, Silva GG, Blanco C, Santamaría R, Lavall RL (2018) LiFePO4/mesoporous carbon hybrid supercapacitor based on LiTFSI/imidazolium ionic liquid electrolyte. J Phys Chem C 122:1456–1465. https://doi.org/10.1021/acs.jpcc.7b09869

    Article  CAS  Google Scholar 

  31. Senthilkumar K, Prabakar SJR, Park C, Jeong S, Lah MS, Pyo M (2016) Graphene oxide self-assembled with a cationic fullerene for high performance pseudo-capacitors. J Mater Chem A 4:1663–1670. https://doi.org/10.1039/C5TA09929C

    Article  CAS  Google Scholar 

  32. Pandit B, Dubal DP, Sankapal BR (2017) Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim Acta 242:382–389. https://doi.org/10.1016/j.electacta.2017.05.010

    Article  CAS  Google Scholar 

  33. Mai LQ, Minhas-Khan A, Tian X, Hercule KM, Zhao YL, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4(2923):1–7. https://doi.org/10.1038/ncomms3923

    Article  CAS  Google Scholar 

  34. Sayyah SM, El-Deeb MM, Kamal SM, Azooz RE (2009) Electropolymerization of p-phenylenediamine on Pt-electrode from aqueous acidic solution: kinetic, mechanism, electrochemical studies and characterization of the polymer obtained. J Appl Polym Sci 112:3695–3706. https://doi.org/10.1002/app.31476

    Article  CAS  Google Scholar 

  35. Lakouraj MM, Zare EN, Moghadam PN (2014) Synthesis of novel conductive poly(p-phenylenediamine)/Fe3O4 nanocomposite via emulsion polymerization and investigation of antioxidant activity. Adv Polym Technol 33.21385(1–7). https://doi.org/10.1002/adv.21385

  36. Vinodh R, Gopi CVVM, Yang Z, Deviprasath C, Atchudan R, Raman V, Yi M, Kim H-J (2020) Novel electrode material derived from porous polymeric organic framework of phloroglucinol and terephthaldehyde for symmetric supercapacitors. J Energy Storage 28:101283. https://doi.org/10.1016/j.est.2020.101283

    Article  Google Scholar 

  37. Jung HC, Vinodh R,.Gopi CVVM, Yi M, Kim H-J, Novel composite electrode material derived from hypercross-linked polymer of pyrene and polyaniline for symmetric supercapacitor. Mater Lett 257:126732. https://doi.org/10.1016/j.matlet.2019.126732

    Article  CAS  Google Scholar 

  38. Atchudan R, Edison TNJI, Perumal S, Thirukumaran P, Vinodh R, Lee YR, Green synthesis of nitrogen-doped carbon nanograss for supercapacitors. J Taiwan Inst Chem E 102:475–486. https://doi.org/10.1016/j.jtice.2019.06.020

    Article  CAS  Google Scholar 

Download references

Funding

This research work was supported by the Brazilian agencies such as CNPq (301868/2017-4), CAPES (BEX 5383/15-3), and FAPERJ (E-26/110.087/2014, /213.577/2015 and /216.730/2015). Dr. R. S. Babu received financial support from CAPES in the form of PNPD Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suresh Babu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 641 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samyn, L.M., Babu, R.S., Devendiran, M. et al. Electropolymerization of p-phenylenediamine films on carbon fiber fabrics electrode for flexible supercapacitors: surface and electrochemical characterizations. Ionics 26, 3041–3050 (2020). https://doi.org/10.1007/s11581-020-03562-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03562-0

Keywords

Navigation