Skip to main content
Log in

Fabrication and Characterization of a Hybrid Structure Comprising Chitosan Hydrogel and PCL Nanofibers for Potential Application in Wound Dressing

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the viewpoint of biomaterials, hydrogel has been established as a structure with straightforward fabrication and widespread applications; however, when it comes to practical use, for instance being under mechanical stress or carrying medicinal agents, different treatments may be required. Here, the interest is limited to the hydrogel of chitosan, finding out to what extent PCL nanofibers mixed in the hydrogel affect the hydrogel properties. The resultant structure is named hybrid. The mixing is carried out through two approaches: the first concerns mixing 1×1 mm2 nanofibrous layers into the hydrogel solution (HM), and the other deals with a hydrogel comprising a single layer of the nanofibrous mat spread within it (LbL). The results indicates that the inclusion of the nanofibers enhances the mechanical properties of the hydrogel. In terms of water absorption, the results demonstrate that HM samples absorb up to 2.5-fold compared with the neat hydrogel, whereas the LbL approach reduces this feature. Furthermore, the HM approach speeds up the degradability rate, while the LbL lowers. The MTS assay demonstrates appropriate growth of the human fibroblast cells. Although the results hold promise for this hybrid as wound dressing, more efforts still ought to be performed to reach satisfactory products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Zhou, L. J. Jiang, P. P. Cao, J. B. Li, and X. G. Chen, Carbohydr. Polym., 117, 524 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. A. Suzuki and S. Sasaki, Proc. Inst. Mech. Eng. H., 229, 828 (2015).

    Article  PubMed  Google Scholar 

  3. S. Dhivya, V. V. Padma, and E. Santhini, Biomedicine, 5, 24 (2015).

    Article  Google Scholar 

  4. M. F. Akhtar, M. Hanif, and N. M. Ranjha, Saudi Pharm. J., 24, 554 (2016).

    Article  PubMed  Google Scholar 

  5. S. Islam, M. A. R. Bhuiyan, and M. N. Islam, J. Polym. Environ., 25, 854 (2017).

    Article  CAS  Google Scholar 

  6. W. Mozalewska, R. Czechowska-Biskup, A. K. Olejnik, R. A. Wach, P. Ulański, and J. M. Rosiak, Radiat. Phys. Chem., 134, 1 (2017).

    Article  CAS  Google Scholar 

  7. H. Hamedi, S. Moradi, S. M. Hudson, and A. E. Tonelli, Carbohydr. Polym., 199, 445 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. J. Jang, H. Oh, J. Lee, T. H. Song, Y. H. Jeong, and D. W. Cho, Appl. Phys. Lett., 102, 211914 (2013).

    Article  Google Scholar 

  9. Y. S. Zhang and A. Khademhosseini, Science, 356, 3627 (2017).

    Article  Google Scholar 

  10. E. A. Kamoun, E. R. S. Kenawy, and X. Chen, J. Adv. Res., 8, 217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Xu, L. Deng, J. Zhang, L. Yin, and A. Dong, J. Biomed. Mater. Res. Part B Appl. Biomater., 104, 640 (2016).

    Article  CAS  Google Scholar 

  12. R. Wu, R. A. Niamat, B. Sansbury, and M. Borjigin, Fibers, 3, 296 (2015).

    Article  CAS  Google Scholar 

  13. Q. Fu, C. Duan, Z. Yan, Y. Li, Y. Si, L. Liu, J. Yu, and B. Ding, Macromol. Rapid Commun., 39, 1800058 (2018).

    Article  Google Scholar 

  14. P. Falamarzpour, T. Behzad, and A. Zamani, Int. J. Mol. Sci., 18, 396 (2017).

    Article  PubMed Central  Google Scholar 

  15. G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul, P. Fredericks, and L. Grøndahl, Biomacromolecules, 8, 2533 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Digimizer Image Analysis Software Version 5 (MedCalc Software bv, Ostend, Belgium; https://www.digimizer.com (Accessed March 23, 2021).

  17. J. Noroozi, C. Ghotbi, J. J. Sardroodi, J. Karimi-Sabet, and M. A. Robert, J. Supercrit. Fluids, 109, 166 (2016).

    Article  CAS  Google Scholar 

  18. V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. Du Toit, and V. M. K. Ndesendo, J. Nanomater, 2013, 789289 (2013).

    Article  Google Scholar 

  19. C. Zhou and Q. Wu, Colloids Surfaces B Biointerfaces, 84, 155 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Z. Peng, Z. Peng, and Y. Shen, Polym.-Plast. Technol. Eng., 50, 1160 (2011).

    Article  CAS  Google Scholar 

  21. O. A. C. Monteiro Jr. and C. Airoldi, Int. J. Biol. Macromol., 26, 119 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. N. R. Kildeeva, P. A. Perminov, L. V. Vladimirov, V. V. Novikov, and S. N. Mikhailov, Russ. J. Bioorganic Chem., 35, 360 (2009).

    Article  CAS  Google Scholar 

  23. L. Poon, L. D. Wilson, and J. V. Headley, Carbohydr. Polym., 109, 92 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. B. C. Smith, Spectrosc. (Santa Monica), 32, 14 (2017).

    CAS  Google Scholar 

  25. B. C. Smith, Spectrosc. (Santa Monica), 32, 19 (2017).

    CAS  Google Scholar 

  26. A. Lesbani, F. Fitriliana, and R. Mohadi, Indones. J. Chem., 15, 64 (2015).

    Article  CAS  Google Scholar 

  27. B. C. Smith, Spectrosc. (Santa Monica), 33, 20 (2018).

    Google Scholar 

  28. J. Zhao and J. Wang, J. Phys. Chem. B, 119, 14831 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. R. Borah and A. Kumar, Mater. Sci. Eng. C, 61, 762 (2016).

    Article  CAS  Google Scholar 

  30. K. P. C. Vollhardt and N. E. Schore, “Organic Chemistry: Structure and Function”, 6th ed., pp.797–798, W. H. Freeman and Company, New York, 2011.

    Google Scholar 

  31. L. Xu, S. Hua, and S. Li, Chem. Commun., 49, 1542 (2013).

    Article  CAS  Google Scholar 

  32. M. Islam, M. Razzak, M. Karim, and A. H. Mirza, Tetrahedron Lett., 58, 1429 (2017).

    Article  CAS  Google Scholar 

  33. A. Kwiecień and Z. Ciunik, Molecules, 20, 14365 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. M. Hejazi, T. Behzad, P. Heidarian, and B. Nasri-Nasrabadi, Compos. Part A Appl. Sci. Manuf., 109, 221 (2018).

    Article  CAS  Google Scholar 

  35. Y. Lu, A. A. Armentrout, J. Li, H. L. Tekinalp, J. Nanda, and S. Ozcan, J. Mater. Chem. A, 3, 13350 (2015).

    Article  CAS  Google Scholar 

  36. Z. Xu, J. Li, H. Zhou, X. Jiang, C. Yang, and F. Wang, RSC Adv., 6, 43626 (2016).

    Article  CAS  Google Scholar 

  37. N. Han, J. Johnson, J. J. Lannutti, and J. O. Winter, J. Control. Release, 158, 165 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Ghasemi-Mobarakeh.

Electronic supplementary material

12221_2021_283_MOESM1_ESM.pdf

Fabrication and Characterization of a Hybrid Structure Comprising Chitosan Hydrogel and PCL Nanofibers for Potential Application in Wound Dressing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safamehr, A., Ghasemi-Mobarakeh, L., Mansurnezhad, R. et al. Fabrication and Characterization of a Hybrid Structure Comprising Chitosan Hydrogel and PCL Nanofibers for Potential Application in Wound Dressing. Fibers Polym 23, 366–376 (2022). https://doi.org/10.1007/s12221-021-0283-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0283-8

Keywords

Navigation