Skip to main content

Advertisement

Log in

Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Chitin and its deacetylated derivative chitosan are natural polymers composed of randomly distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit). Biopolymers like chitin and chitosan exhibit diverse properties that open up a wide-ranging of applications in various sectors especially in biomedical science. The latest advances in the biomedical research are important emerging trends that hold a great promise in wound-healing management products. Chitin and chitosan are considered as useful biocompatible materials to be used in a medical device to treat, augment or replace any tissue, organ, or function of the body. A body of recent studies suggests that chitosan and its derivatives are promising candidates for supporting materials in tissue engineering applications. This review article is mainly focused on the contemporary research on chitin and chitosan towards their applications in numerous biomedical fields namely tissue engineering, artificial kidney, skin, bone, cartilage, liver, nerve, tendon, wound-healing, burn treatment and some other useful purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yeul VS, Rayalu SS (2013) J Polym Environ 21(2):606–614

    Article  CAS  Google Scholar 

  2. Bhuiyan MR, Shaid A, Bashar MM, Haque P, Hannan MA (2013) Open J Org Polym Mater 3(4):87–91

    Article  CAS  Google Scholar 

  3. Dutta PK, Dutta J, Tripathi VS (2004) J Sci Ind Res 63(1):20–31

    CAS  Google Scholar 

  4. Bashar MM, Khan MA (2013) J Polym Environ 21(1):181–190

    Article  CAS  Google Scholar 

  5. Chou CK, Chen SM, Li YC, Huang TC, Lee JA (2015) SpringerPlus 4(1):1–7

    Article  CAS  Google Scholar 

  6. Kong M, Chen XG, Xing K, Park HJ (2010) Int J Food Microbiol 144(1):51–63

    Article  CAS  Google Scholar 

  7. Bhuiyan MR, Shaid A, Khan MA (2014) Chem Mater Eng 2(4):96–100

    CAS  Google Scholar 

  8. Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, Gemma G, Heras Á (2009) Curr Chem Biol 3(2):203–230

    CAS  Google Scholar 

  9. Kurita K (2001) Prog Polym Sci 26(9):1921–1971

    Article  CAS  Google Scholar 

  10. Kumar MNR (2000) React Funct Polym 46(1):1–27

    Article  CAS  Google Scholar 

  11. Tan H, Chu CR, Payne KA, Marra KG (2009) Biomaterials 30(13):2499–2506

    Article  CAS  Google Scholar 

  12. Croisier F, Jérôme C (2013) Eur Polym J 49(4):780–792

    Article  CAS  Google Scholar 

  13. Kim SK, Rajapakse N (2005) Carbohydr Polym 62(4):357–368

    Article  CAS  Google Scholar 

  14. Roberts GAF (1992) Chitin chemistry. Macmillan Press Ltd., London

    Book  Google Scholar 

  15. Mima S, Miya SM, Iwamoto R, Yoshikawa S (1983) J Appl Polym Sci 28:1909–1917

    Article  CAS  Google Scholar 

  16. Kasaai MR (2009) J Agric Food Chem 57(5):1667–1676

    Article  CAS  Google Scholar 

  17. No HK, Meyers SP (1995) J Aquat Food Prod Technol 4(2):27–52

    Article  CAS  Google Scholar 

  18. Koide SS (1998) Nutr Res 18(6):1091–1101

    Article  CAS  Google Scholar 

  19. Klaykruayat B, Siralertmukul K, Srikulkit K (2010) Carbohydr Polym 80(1):197–207

    Article  CAS  Google Scholar 

  20. Tomihata K, Ikada Y (1997) Biomaterials 18:567–575

    Article  CAS  Google Scholar 

  21. Zhang H, Neau SH (2001) Biomaterials 22(12):1653–1658

    Article  CAS  Google Scholar 

  22. Lim SH, Hudson SM (2004) Carbohydr Res 339(2):313–319

    Article  CAS  Google Scholar 

  23. Zheng LY, Zhu JF (2003) Carbohydr Polym 54(4):527–530

    Article  CAS  Google Scholar 

  24. O’brien FJ (2011) Mater Today 14(3):88–95

    Article  CAS  Google Scholar 

  25. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Macromol Biosci 12(3):286–311

    Article  CAS  Google Scholar 

  26. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Carbohydr Polym 82(2):227–232

    Article  CAS  Google Scholar 

  27. Chow KS, Khor E, Wan ACA (2001) J Polym Res 8(1):27–35

    Article  CAS  Google Scholar 

  28. Wang M, Chen LJ, Ni J, Weng J, Yue CY (2001) J Mater Sci Mater Med 12(10–12):855–860

    Article  CAS  Google Scholar 

  29. Ma J, Wang H, He B, Chen J (2001) Biomaterials 22(4):331–336

    Article  CAS  Google Scholar 

  30. Chow KS, Khor E (2000) Biomacromolecules 1(1):61–67

    Article  CAS  Google Scholar 

  31. Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI, Cho CS (2002) Biomaterials 23(14):2827–2834

    Article  CAS  Google Scholar 

  32. Cai K, Yao K, Cui Y, Lin S, Yang Z, Li X, Luo J (2002) J Biomed Mater Res 60(3):398–404

    Article  CAS  Google Scholar 

  33. Chung TW, Lu YF, Wang SS, Lin YS, Chu SH (2002) Biomaterials 23(24):4803–4809

    Article  CAS  Google Scholar 

  34. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Jayakumar R (2009) Carbohydr Polym 77(4):863–869

    Article  CAS  Google Scholar 

  35. Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Carbohydr Polym 79(2):284–289

    Article  CAS  Google Scholar 

  36. Peter M, Kumar PTS, Binulal NS, Nair SV, Tamura H, Jayakumar R (2009) Carbohydr Polym 78(4):926–931

    Article  CAS  Google Scholar 

  37. Sing DK, Ray AR (2000) J Macromol Sci Part C Polym Rev 40(1):69–83

    Article  Google Scholar 

  38. Matsuyama H, Teramoto M, Urano H (1997) J Membr Sci 126(1):151–160

    Article  CAS  Google Scholar 

  39. Nishioka N, Kuromatsu T, Takahashi T, Uno M, Kosai K (1986) Polym J 18(2):131–140

    Article  CAS  Google Scholar 

  40. Mollison AN, Graydon WF (1977) J Biomed Mater Res 11(4):563–575

    Article  CAS  Google Scholar 

  41. Yoon SC, Jhon MS (1982) J Appl Polym Sci 27(8):3133–3149

    Article  CAS  Google Scholar 

  42. Senthilkumar S, Rajesh S, Jayalakshmi A, Aishwarya G, Mohan DR (2012) J Polym Res 19(6):1–11

    Article  CAS  Google Scholar 

  43. Radhakumary C, Nair PD, Mathew S, Nair CP (2006) J Appl Polym Sci 101(5):2960–2966

    Article  CAS  Google Scholar 

  44. Blair HS, Guthrie J, Law TK, Turkington P (1987) J Appl Polym Sci 33(2):641–656

    Article  CAS  Google Scholar 

  45. Srinivasa PC, Ramesh MN, Kumar KR, Tharanathan RN (2003) Carbohydr Polym 53(4):431–438

    Article  CAS  Google Scholar 

  46. Uragami T, Yoshida F, Sugihara M (1983) J Appl Polym Sci 28(4):1361–1370

    Article  CAS  Google Scholar 

  47. Reinhart CT, Peppas NA (1984) J Membr Sci 18:227–239

    Article  CAS  Google Scholar 

  48. Kikuchi Y, Kubota N (1987) Bull Chem Soc Jpn 60(1):375–380

    Article  CAS  Google Scholar 

  49. Kikuchi Y, Kubota N, Maruo K, Goto Y (1987) Die Makromol Chem 188(11):2631–2642

    Article  CAS  Google Scholar 

  50. Kikuchi Y, Kubota N, Mitsuishi H (1988) J Appl Polym Sci 35(1):259–271

    Article  CAS  Google Scholar 

  51. Kikuchi Y, Kubota N (1988) Bull Chem Soc Jpn 61(8):2943–2947

    Article  CAS  Google Scholar 

  52. Kubota N, Kikuchi Y, Mizuhara Y, Ishihara T, Takita Y (1993) J Appl Polym Sci 50(9):1665–1670

    Article  CAS  Google Scholar 

  53. Hirano S (1978) Agric Biol Chem 42(10):1939–1940

    CAS  Google Scholar 

  54. Hirano S, Tobetto K, Hasegawa M, Matsuda N (1980) J Biomed Mater Res 14(4):477–485

    Article  CAS  Google Scholar 

  55. Singh DK, Ray AR (1994) J Appl Polym Sci 53(8):1115–1121

    Article  CAS  Google Scholar 

  56. Singh DK, Ray AR (1997) J Appl Polym Sci 66(5):869–877

    Article  CAS  Google Scholar 

  57. Singh DK, Ray AR (1999) J Membr Sci 155(1):107–112

    Article  CAS  Google Scholar 

  58. Nishimura K, Nishimura SI, Seo H, Nishi N, Tokura S, Azuma I (1986) J Biomed Mater Res 20(9):1359–1372

    Article  CAS  Google Scholar 

  59. Zikakis J (ed) (2012) Chitin, chitosan, and related enzymes. Academic, New York

    Google Scholar 

  60. Muzzarelli R, Baldassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, Vasi V (1988) Biomaterials 9(3):247–252

    Article  CAS  Google Scholar 

  61. Yang TL (2011) Int J Mol Sci 12(3):1936–1963

    Article  CAS  Google Scholar 

  62. Su CH, Sun CS, Juan SW, Hu CH, Ke WT, Sheu MT (1997) Biomaterials 18(17):1169–1174

    Article  CAS  Google Scholar 

  63. Hung WS, Fang CL, Su CH, Lai WFT, Chang YC, Tsai YH (2001) J Biomed Mater Res 56(1):93–100

    Article  CAS  Google Scholar 

  64. Su CH, Sun CS, Juan SW, Ho HO, Hu CH, Sheu MT (1999) Biomaterials 20(1):61–68

    Article  CAS  Google Scholar 

  65. Madhumathi K, Kumar PS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Jayakumar R (2010) J Biomed Mater Res 21(2):807–813

    CAS  Google Scholar 

  66. Kumar PS, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Carbohydr Polym 80(3):761–767

    Article  CAS  Google Scholar 

  67. Dung PL, Pham TTD, Nguyen KT, Chu DK, Le TS, Trinh B, Nguyen TB, Bach HA, Cao VM (2001) Vinachitin, an artificial skin for wound healing. Kodansha Scientific Ltd., Tokyo

    Google Scholar 

  68. Stone CA, Wright H, Devaraj VS, Clarke T, Powell R (2000) Br J Plast Surg 53(7):601–606

    Article  CAS  Google Scholar 

  69. Yannas IV, Burke JF (1980) J Biomed Mater Res 14(1):65–81

    Article  CAS  Google Scholar 

  70. Kifune K, Yamaguchi Y, Kishimoto S (1988) Trans Soc Biomater 11:216–218

    Google Scholar 

  71. Kim KY, Min DS (1988) Trans Soc Biomater 11:558

    Google Scholar 

  72. Mao J, Zhao L, Yao K, Shang Q, Yang G, Cao Y (2003) J Biomed Mater Res, Part A 64(2):301–308

    Article  CAS  Google Scholar 

  73. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jérôme R (2002) Biomaterials 23(18):3871–3878

    Article  CAS  Google Scholar 

  74. Hench LL, Wilson J (1984) Science 226(4675):630–636

    Article  CAS  Google Scholar 

  75. Kim IY, Seo SJ, Moon HS, Yoo MK, ParkIY Kim BC, Cho CS (2008) Biotechnol Adv 26(1):1–21

    Article  CAS  Google Scholar 

  76. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Applications of carbon nanotubes. In: Carbon nanotubes-synthesis, structure, properties, and applications. Springer, Berlin, Heidelberg, pp 391–425

    Google Scholar 

  77. Samal SS, Bal S (2008) J Miner Mater Charact Eng 7(04):355

    Google Scholar 

  78. Wang SF, Shen L, Zhang WD, Tong YJ (2005) Biomacromolecules 6(6):3067–3072

    Article  CAS  Google Scholar 

  79. Gutiérrez MC, Jobbágy M, Ferrer ML, del Monte F (2007) Chem Mater 20(1):11–13

    Article  CAS  Google Scholar 

  80. Zhang Y, Ni M, Zhang M, Ratner B (2003) Tissue Eng 9(2):337–345

    Article  CAS  Google Scholar 

  81. Zhang Y, Zhang M (2002) J Biomed Mater Res 62(3):378–386

    Article  CAS  Google Scholar 

  82. Ge Z, Baguenard S, Lim LY, Wee A, Khor E (2004) Biomaterials 25(6):1049–1058

    Article  CAS  Google Scholar 

  83. Kawakami T, Antoh M, Hasegawa H, Yamagishi T, Ito M, Eda S (1992) Biomaterials 13(11):759–763

    Article  CAS  Google Scholar 

  84. Hu Q, Li B, Wang M, Shen J (2004) Biomaterials 25(5):779–785

    Article  CAS  Google Scholar 

  85. Suh JKF, Matthew HW (2000) Biomaterials 21(24):2589–2598

    Article  CAS  Google Scholar 

  86. Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R (1997) J Biomed Mater Res 34(2):211–220

    Article  CAS  Google Scholar 

  87. Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J (2008) Matrix Biol 27(1):12–21

    Article  CAS  Google Scholar 

  88. Goessler UR, Hormann K, Riedel F (2004) Int J Mol Med 13:505–514

    CAS  Google Scholar 

  89. Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G (1999) Biomaterials 20(20):1937–1944

    Article  CAS  Google Scholar 

  90. Mattioli-Belmonte M, Gigante A, Muzzarelli RAA, Politano R, De Benedittis A, Specchia N, Greco F (1999) Med Biol Eng Comput 37(1):130–134

    Article  CAS  Google Scholar 

  91. Cho CS, Kim IY, Kim YK (2006) Tissue Eng Regen Med 3(1):27–33

    Google Scholar 

  92. Detry O, Arkadopoulos N, Ting P, Kahaku E (1999) Am Surg 65(10):934

    CAS  Google Scholar 

  93. Hoekstra R, Chamuleau RA (2002) Int J Artif Organs 25(3):182–191

    CAS  Google Scholar 

  94. Ben-Ze’ev A, Robinson GS, Bucher NL, Farmer SR (1988) Proc Natl Acad Sci 85(7):2161–2165

    Article  Google Scholar 

  95. LeCluyse EL, Bullock PL, Parkinson A (1996) Adv Drug Deliv Rev 22(1):133–186

    Article  CAS  Google Scholar 

  96. Kang IK, Moon JS, Jeon HM, Meng W, Kim YI, Hwang YJ, Kim S (2005) J Mater Sci Mater Med 16(6):533–539

    Article  CAS  Google Scholar 

  97. Lindahl U, Hook M (1978) Annu Rev Biochem 47(1):385–417

    Article  CAS  Google Scholar 

  98. Li J, Pan J, Zhang L, Guo X, Yu Y (2003) J Biomed Mater Res, Part A 67(3):938–943

    Article  CAS  Google Scholar 

  99. Li J, Pan J, Zhang L, Yu Y (2003) Biomaterials 24(13):2317–2322

    Article  CAS  Google Scholar 

  100. Chupa JM, Foster AM, Sumner SR, Madihally SV, Matthew HW (2000) Biomaterials 21(22):2315–2322

    Article  CAS  Google Scholar 

  101. Wang X, Yan Y, Lin F, Xiong Z, Wu R, Zhang R, Lu Q (2005) J Biomater Sci Polym Ed 16(9):1063–1080

    Article  CAS  Google Scholar 

  102. Heath CA, Rutkowski GE (1998) Trends Biotechnol 16(4):163–168

    Article  CAS  Google Scholar 

  103. Willerth SM, Sakiyama-Elbert SE (2007) Adv Drug Deliver Rev 59(4):325–338

    Article  CAS  Google Scholar 

  104. Nair LS, Laurencin CT (2007) Prog Polym Sci 32(8):762–798

    Article  CAS  Google Scholar 

  105. Haipeng G, Yinghui Z, Jianchun L, Yandao G, Nanming Z, Xiufang Z (2000) J Biomed Mater Res 52(2):285–295

    Article  CAS  Google Scholar 

  106. Yuan Y, Zhang P, Yang Y, Wang X, Gu X (2004) Biomaterials 25(18):4273–4278

    Article  CAS  Google Scholar 

  107. Bunge RP (1994) J Neurol 242(1):S19–S21

    Article  CAS  Google Scholar 

  108. Itoh S, Suzuki M, Yamaguchi I, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J (2003) Artif Organs 27(12):1079–1088

    Article  Google Scholar 

  109. Shigemasa Y, Minami S (1996) Biotechnol Genet Eng Rev 13(1):383–420

    Article  CAS  Google Scholar 

  110. Baldrick P (2010) Regul Toxicol Pharm 56(3):290–299

    Article  CAS  Google Scholar 

  111. Kumar MR (1999) Bull Mater Sci 22(5):905–915

    Article  Google Scholar 

  112. Dutkiewicz J, Szosland L, Kucharska M, Judkiewicz L, Ciszewski R (1990) J Bioact Compat Polym 5(3):293–304

    Article  CAS  Google Scholar 

  113. Sahoo D, Sahoo S, Mohanty P, Sasmal S, Nayak PL (2009) Design Monomers Polym 12(5):377–404

    Article  CAS  Google Scholar 

  114. Hoven VP, Tangpasuthadol V, Angkitpaiboon Y, Vallapa N, Kiatkamjornwong S (2007) Carbohydr Polym 68(1):44–53

    Article  CAS  Google Scholar 

  115. Laurienzo P (2010) Mar Drugs 8(9):2435–2465

    Article  CAS  Google Scholar 

  116. Horton D, Just EK (1973) Carbohydr Res 29(1):173–179

    Article  CAS  Google Scholar 

  117. Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Int J Biol Macromol 40(3):175–181

    Article  CAS  Google Scholar 

  118. Xue L, Greisler HP (2003) J Vasc Surg 37(2):472–480

    Article  Google Scholar 

  119. Madihally SV, Matthew HW (1999) Biomaterials 20(12):1133–1142

    Article  CAS  Google Scholar 

  120. Şenel S, McClure SJ (2004) Adv Drug Deliv Rev 56(10):1467–1480

    Article  CAS  Google Scholar 

  121. Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Expert Rev Anticancer Ther 9(7):857–879

    Article  CAS  Google Scholar 

  122. Rajendran S, Anand SC (2002) Text Prog 32(4):1–42

    Article  Google Scholar 

  123. Nakajima M, Atsumi K, Kifune K, Miura K, Kanamaru H (1986) Jpn J Surg 16(6):418–424

    Article  CAS  Google Scholar 

  124. Chung YC, Wang HL, Chen YM, Li SL (2003) Bioresour Technol 88(3):179–184

    Article  CAS  Google Scholar 

  125. Bhuiyan MR, Hossain MA, Zakaria M, Islam MN, Uddin MZ (2016) J Polym Environ. doi:10.1007/s10924-016-0815-2

    Google Scholar 

  126. Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N (2010) Prog Mater Sci 55(7):675–709

    Article  CAS  Google Scholar 

  127. Evans EE, Kent SP (1962) J Histochem Cytochem 10(1):24–28

    Article  CAS  Google Scholar 

  128. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Food Chem 114(4):1173–1182

    Article  CAS  Google Scholar 

  129. Yalpani M, Johnson F, Robinson LE, Brine CJ, Sandford PA, Zikakis JP (1992) Advances in chitin and chitosan. Elsevier, New York

    Google Scholar 

  130. Ramya R, Venkatesan J, Kim SK, Sudha PN (2012) J Biomater Tissue Eng 2(2):100–111

    Article  CAS  Google Scholar 

  131. Kim SK (ed) (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca Raton

    Google Scholar 

  132. Mathew ME, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Carbohydr Polym 80(2):442–448

    Article  CAS  Google Scholar 

  133. Koshkina NV, Agoulnik IY, Melton SL, Densmore CL, Knight V (2003) Mol Ther 8(2):249–254

    Article  CAS  Google Scholar 

  134. Dass CR (2004) Biotechnol Appl Biochem 40(2):113–122

    Article  CAS  Google Scholar 

  135. Pillé JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Malvy C (2006) Hum Gene Ther 17(10):1019–1026

    Article  Google Scholar 

  136. Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Jpn J Cancer Res 92(4):459–466

    Article  CAS  Google Scholar 

  137. Chen WR, Adams RL, Carubelli R, Nordquist RE (1997) Cancer Lett 115(1):25–30

    Article  CAS  Google Scholar 

  138. Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I (1984) Immunological activity of chitin and its derivatives. Vaccine 2:93–99

    Article  CAS  Google Scholar 

  139. Tokoro A, Tatewaki N, Suzuki K, Mikami T, Suzuki S, Suzuki M (1988) Chem Pharm Bull 36(2):784–790

    Article  CAS  Google Scholar 

  140. Murata J, Saiki I, Nishimura SI, Nishi N, Tokura S, Azuma I (1989) Jpn J Cancer Res 80(9):866–872

    Article  CAS  Google Scholar 

  141. Gumińska M, Ignacak J, Wojcik E (1995) Pol J Pharmacol 48(5):495–501

    Google Scholar 

  142. Qi L, Xu Z, Chen M (2007) Eur J Cancer 43(1):184–193

    Article  CAS  Google Scholar 

  143. Lo J, Lange D, Chew BH (2014) J Antibiot 3(1):87–97

    Article  CAS  Google Scholar 

  144. Irvine SA, Yun X, Venkatraman S (2012) Drug Deliv and Transl Res 2(5):384–397

    Article  CAS  Google Scholar 

  145. Chiellini E, Giusti P (1983) Heparin-like substances and blood-compatible polymers obtained from chitin and chitosan. In: Polymers in medicine. Springer, US, pp 359–374

    Chapter  Google Scholar 

  146. Dufresne A, Thomas S, Pothan LA (2013) Chemical modification of chitosan and its biomedical application. In: Biopolymer nanocomposites-processing properties and applications. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 33–51

    Chapter  Google Scholar 

  147. Andrades JA (2013) Naturally derived biomaterials: preparation and application. In: Regenerative medicine and tissue engineering. InTech, Janeza Trdine, Rijeka, pp 247–274

    Chapter  Google Scholar 

  148. Gupta H, Aqil M (2012) Drug Discov Today 17(9):522–527

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Bhuiyan, M.A.R. & Islam, M.N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J Polym Environ 25, 854–866 (2017). https://doi.org/10.1007/s10924-016-0865-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0865-5

Keywords

Navigation