Skip to main content
Log in

Improvement of Mechanical Properties of Pineapple Leaf Fibers by Mercerization Process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Pineapple leaf fibers (PALF) were modified by the mercerization process to improve their mechanical properties for applications in composites. The changes in the morphology and mechanical properties of fibers were evaluated after using different conditions (temperature and sodium hydroxide concentration) for the mercerization process. The study was done using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Mercerization treatments caused a reduction in the diameter of fibers, either due removal of surface impurities, disintegration of middle lamella and/or interfibrillar swelling. Mechanical properties of mercerized fibers were modified. The highest tensile strength was observed when mercerization was done at a temperature of 60 °C and alkali concentration of 3 % wt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Zimniewska, M. Wladyka-Przybylak, S. Rana, and R. Fangueiro, Eds., Text. Sci. Clothing Technol., p.171, 2016.

    Google Scholar 

  2. G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. E. Errico, Polym. Compos., 28, 98 (2007).

    Article  CAS  Google Scholar 

  3. C. Fragassa in “Advances in Applications of Industrial Biomaterials” (E. Pellicer, D. Nikolic, J. Sort, M. Baró, F. Zivic, N. Grujovic, R. Grujic, and S. Pelemis Eds.), pp.21–47, Cham: Springer International Publishing, 2017.

  4. B. Shyamal, N. Debasis, and D. Sanjoy, Indian J. Fibre Text. Res., 36, 172 (2011).

    Google Scholar 

  5. M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. E. Hoque, Int. J. Polym. Sci., 2015, doi:https://doi.org/10.1155/2015/950567 (2015).

  6. W. Smitthipong, R. Tantatherdtam, and R. Chollakup, J. Thermoplast. Compos. Mater., 28, 717 (2015).

    Article  CAS  Google Scholar 

  7. U. Hujuri, S. K. Chattopadhay, R. Uppaluri, and A. K. Ghoshal, J. Appl. Polym. Sci., 107, 1507 (2008).

    Article  CAS  Google Scholar 

  8. B. H. Krauss, Bot. Gaz., 110, 333 (1949).

    Article  Google Scholar 

  9. S. Kalia, B. S. Kaith, and I. Kaur, “Cellulose Fibers Bioand Nano-polymer Composites; Green Chemistry and Technology”, Berlin, Heidelberg, New York, Springer, 2011.

    Book  Google Scholar 

  10. B. M. Cherian, A. L. Leão, S. F. de Souza, L. M. M. Costa, G. M. de Olyveira, M. Kottaisamy, E. R. Nagarajan, and S. Thomas, Carbohydr. Polym., 86, 1790 (2011).

    Article  CAS  Google Scholar 

  11. J. George, S. S. Bhagawan, and S. Thomas, Compos. Sci. Technol., 58, 1471 (1998).

    Article  CAS  Google Scholar 

  12. W. Y. Hamad, “Cellulosic Materials: Fibers, Networks and Composites”, Springer US, 2013.

    Google Scholar 

  13. D. Hazarika, N. Gogoi, S. Jose, R. Das, and G. Basu, J. Clean. Prod., 141, 580 (2017).

    Article  CAS  Google Scholar 

  14. S. Jose, R. Salim, and L. Ammayappan, J. Nat. Fibers, 13, 362 (2016).

    Article  Google Scholar 

  15. S. H. S. M. Fadzullah and Z. Mustafa in “Green Approaches to Biocomposite Materials Science and Engineering” (D. Verma, S. Jain, X. Zhang, and P. C. Gope Eds.), pp.125–147, Hershey PA: IGI Global, 2016.

  16. N. Kengkhetkit and T. Amornsakchai, Ind. Crops Prod., 40, 55 (2012).

    Article  CAS  Google Scholar 

  17. A. K. Mohanty, M. Misra, and L. T. Drzal, “Natural Fibers, Biopolymers, and Biocomposites”, Boca Raton, FL: Taylor & Francis, 2005.

    Book  Google Scholar 

  18. K. L. Pickering, M. G. A. Efendy, and T. M. Le, Compos. Part A Appl. Sci. Manuf., 83, 98 (2016).

    Article  CAS  Google Scholar 

  19. O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).

    Article  CAS  Google Scholar 

  20. X. Li, L. G. Tabil, and S. Panigrahi, J. Polym. Environ., 15, 25 (2007).

    Article  CAS  Google Scholar 

  21. T. L. Vigo, “Textile Processing and Properties: Preparation, Dyeing, Finishing and Performance”, Elsevier Science, 2013.

    Google Scholar 

  22. M. Y. Hashim, M. N. Roslan, A. M. Amin, A. M. A. Zaidi, and S. Ariffin, World Acad. Sci. Eng. Technol., 68, 1638 (2012).

    Google Scholar 

  23. S. C. Saha, B. K. Das, P. K. Ray, S. N. Pandey, and K. Goswami, J. Appl. Polym. Sci., 43, 1885 (1991).

    Article  CAS  Google Scholar 

  24. R. K. Samal and M. C. Ray, J. Appl. Polym. Sci., 64, 2119 (1997).

    Article  CAS  Google Scholar 

  25. N. Lopattananon, Y. Payae, and M. Seadan, J. Appl. Polym. Sci., 110, 433 (2008).

    Article  CAS  Google Scholar 

  26. N. Cordeiro, C. Gouveia, and M. J. John, Ind. Crops Prod., 33, 108 (2011).

    Article  CAS  Google Scholar 

  27. S. S. Munawar, K. Umemura, F. Tanaka, and S. Kawai, J. Wood Sci., 54, 28 (2008).

    Article  CAS  Google Scholar 

  28. G. Rajesh, G. Siripurapu, and A. Lella, Mater. Today Proc., 5, 13146 (2018).

    Article  Google Scholar 

  29. Tappi Method T204 cm-97, TAPPI PRESS, Atlanta, GA, 1988.

  30. Tappi MethodT207 om-88, TAPPI PRESS, Atlanta, GA, 1988.

  31. UNE 57050:2003, Asociacion Espanola de Normalizacion, Madrid, 2003.

  32. ASTM-D1104, ASTM International, West Conshohocken PA, 1956.

  33. Tappi Method T203 cm-09, TAPPI PRESS, Atlanta, GA, 1999.

  34. Tappi Method T222 om-02, TAPPI PRESS, Atlanta, GA, 1988.

  35. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol. Biofuels, 3, 10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. L. J. Gibson, J. R. Soc. Interface, 9, 2749 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K. J. Niklas, “Plant Biomechanics: An Engineering Approach to Plant Form and Function”, University of Chicago Press, 1992.

    Google Scholar 

  38. S. S. Munawar, K. Umemura, and S. Kawai, J. Wood Sci., 53, 108 (2007).

    Article  Google Scholar 

  39. V. Placet, F. Trivaudey, O. Cisse, V. Gucheret-Retel, and M. L. Boubakar, Compos. Part A Appl. Sci. Manuf., 43, 275 (2012).

    Article  CAS  Google Scholar 

  40. A. Célino, S. Fréour, F. Jacquemin, and P. Casari, Front. Chem., 1 (2014).

  41. D. Ray and B. K. Sarkar, J. Appl. Polym. Sci., 80, 1013 (2001).

    Article  CAS  Google Scholar 

  42. Y. Yue, G. Han, and Q. Wu, BioResources, 8, 6460 (2013).

    Article  Google Scholar 

  43. Y. Wang, Ph. D. Dissertation, Georgia Tech, 2008.

  44. J. Siregar, S. Sapuan, M. Rahman, and H. Zaman, Serdang, Malaysia, 2008,19.

    Google Scholar 

  45. H. P. S. A. Khalil, M. S. Alwani, and A. K. M. Omar, BioResources, 1, 220 (2006).

    Google Scholar 

  46. A. Bismarck, S. Mishra, and T. Lampke, “Natural Fibers, Biopolymers, and Biocomposites”, CRC Press, 2005.

    Google Scholar 

  47. S. Y. Oh, D. I. Yoo, Y. Shin, and G. Seo, Carbohydr. Res., 340, 417 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. A. R. Osorio, R. Zuluaga, C. Castro, N. Correa, J. Vélez, and P. Gañán, Sci. Tech., 4, 689 (2007).

    Google Scholar 

  49. R. Zuluaga, J. L. Putaux, J. Cruz, J. Vélez, I. Mondragon, and P. Gañán, Carbohydr. Polym., 76, 51 (2009).

    Article  CAS  Google Scholar 

  50. D. N. S. Hon and N. Shiraishi, “Wood and Cellulosic Chemistry”, 2nd ed., Revised, and Expanded. Taylor & Francis, 2000.

    Google Scholar 

  51. M. Das and D. Chakraborty, J. Appl. Polym. Sci., 102, 5050 (2006).

    Article  CAS  Google Scholar 

  52. M. H. Lee, H. S. Park, K. J. Yoon, and P. J. Hauser, Text. Res. J., 74, 146 (2004).

    Article  CAS  Google Scholar 

  53. A. R. Sena Neto, M. A. M. Araujo, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini, Ind. Crops Prod., 43, 529 (2013).

    Article  CAS  Google Scholar 

  54. N. Reddy and Y. Yang, Trends Biotechnol., 23, 22 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. A. R. Sena Neto, M. A. M. Araujo, R. M. P. Barboza, A. S. Fonseca, G. H. D. Tonoli, F. V. D. Souza, L. H. C. Mattoso, and J. M. Marconcini, Ind. Crops Prod., 64, 68 (2015).

    Article  CAS  Google Scholar 

  56. M. Cai, H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. Waterhouse, and Y. Li, Ind. Crops Prod., 65, 27 (2015).

    Article  CAS  Google Scholar 

  57. A. Duval, A. Bourmaud, L. Augier, and C. Baley, Mater. Lett., 65, 797 (2011).

    Article  CAS  Google Scholar 

  58. C. Baley, Compos. Part A Appl. Sci. Manuf., 33, 939 (2002).

    Article  Google Scholar 

  59. A. R. Mohamed, S. M. Sapuan, M. Shahjahan, and A. Khalina, J. Food, Agric. Environ., 7, 235 (2009).

    CAS  Google Scholar 

  60. A. Roy, S. Chakraborty, S. P. Kundu, R. K. Basak, S. Basu Majumder, and B. Adhikari, Bioresour. Technol., 107, 222 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. A. Bledzki, Prog. Polym. Sci., 24, 221 (1999).

    Article  CAS  Google Scholar 

  62. K. Goda, M. S. Sreekala, A. Gomes, T. Kaji, and J. Ohgi, Compos. Part A Appl. Sci. Manuf., 37, 2213 (2006).

    Article  CAS  Google Scholar 

  63. A. Alawar, A. M. Hamed, and K. Al-Kaabi, Compos. Part B Eng., 40, 601 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Jaramillo-Quiceno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaramillo-Quiceno, N., Vélez R., J.M., Cadena Ch., E.M. et al. Improvement of Mechanical Properties of Pineapple Leaf Fibers by Mercerization Process. Fibers Polym 19, 2604–2611 (2018). https://doi.org/10.1007/s12221-018-8522-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8522-3

Keywords

Navigation