Skip to main content
Log in

Characteristics of Electrical Heating Elements Coated with Graphene Nanocomposite on Polyester Fabric: Effect of Different Graphene Contents and Annealing Temperatures

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper reports the fabrication of electrical heating elements based on the graphene/waterborne polyurethane (WPU) composite coated on polyester fabric with toughness like that of artificial leather. Samples were prepared with 0, 4, 8, and 16 wt% of graphene by using the knife edge method, and then, the samples were annealed from 100 oC to 160 °C. The graphene content had a large effect on the electrical and electrical heating properties. The surface resistivity was decreased by approximately 6 orders of magnitude with an increase from 0 wt% to 16 wt% graphene/WPU composite fabric. The electric heating properties were also improved, as indicated by the percolation threshold. Samples with various graphene contents were annealed, and it was found that the electrical and electrical heating properties were improved, and the most enhanced properties were obtained when the samples were annealed at 120 °C. The initial modulus and tensile strength were increased in comparison with those of 0 wt% and 16 wt% graphene/WPU composite coated on fabrics, but the elongation at break value was slightly decreased with an increasing graphene content. When the samples were annealed, initial modulus and tensile strength of samples were improved at 120 °C and 140 °C, and they were slightly decreased at 160 °C. However, the elongation at break showed an opposite tendency to the tensile strength. With the increase in content of graphene and annealing at 120 °C and 140 °C, the samples were more stiff and tough, and at 160 °C, the samples were softer. Therefore, graphene/WPU composite coated on polyester fabric by use of the annealing process may have applications in electrical heating elements due to its excellent heating performance and toughness like that of artificial leather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Sen, “Coated Textiles: Principles and Applications”, CRC Press, Boca Raton, USA, 2001.

    Book  Google Scholar 

  2. P. D. Duborovski, “Woven Fabric Engineering”, pp.241–254, INTECH, Rijeka, Croatia, 2010.

    Google Scholar 

  3. J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, M. Jeyratnam, and A. R. Yuvaraj, RSC Adv., 6, 114453 (2016).

    Article  CAS  Google Scholar 

  4. K. W. Lee, J. H. Ko, J. Y. Shim, and Y. H. Kim, Polymer (Korea), 33, 175 (2009).

    CAS  Google Scholar 

  5. K. L. Noble, Prog. Org. Coat., 32, 131 (1997).

    Article  CAS  Google Scholar 

  6. A. Koreen, K. M. Zia, M. Zuber, S. Tabasum, and M. J. Saif, Korean J. Chem. Eng., 33, 388 (2016).

    Article  CAS  Google Scholar 

  7. N. Saravanan, R. Rajasekar, S. Mahalakshni, T. P. Sathishkumar, K. S. K. Sasikumar, and S. Sahoo, J. Reinf. Plast. Comp., 33, 1158 (2014).

    Article  CAS  Google Scholar 

  8. S. Araby, Q. Meng, L. Zhang, I. Zaman, P. Majewski, and J. Ma, Nanotechnology, 26, 112001 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. A. Kausar, Polym. Plast. Technol. Eng., 56, 1468 (2017) doi:10.1080/03602559.2016.1277240.

    Article  CAS  Google Scholar 

  10. C. S. Kang, M. H. Jee, and D. H. Baik, Text. Sci. Eng., 49, 174 (2012).

    Article  CAS  Google Scholar 

  11. S. K. Yadav and J. W. Cho, Appl. Surf. Sci., 266, 360 (2013).

    Article  CAS  Google Scholar 

  12. H. Song, M. Wang, Y. Wang, Y. Zhang, A. Umar, and Z. Guo, Sci. Adv. Mater., 9, 1 (2017).

    Article  CAS  Google Scholar 

  13. G. Kaur, R. Adhikari, P. Cass, M. Bown, M. D. M. Evans, A. V. Vashi, and P. Gunatillake, RSC Adv., 5, 98762 (2015).

    Article  CAS  Google Scholar 

  14. J. Molina, RSC Adv., 6, 68261 (2016).

    Article  CAS  Google Scholar 

  15. X. Hu, M. Tian, L. Qu, S. Zhu, and G. Han, Carbon, 95, 625 (2015).

    Article  CAS  Google Scholar 

  16. L. Gan, S. Shang, C. W. M. Yuen, and S. X. Jiang, Comp. Sci. Tech., 117, 208 (2015).

    Article  CAS  Google Scholar 

  17. F. Shao, S.-W. Bian, Q. Zhu, M.-X. Guo, S. Liu, and Y.-H. Peng, Chem. Asian J., 11, 1906 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. A. Berendich, R. Khajavi, A. A. Yousefi, and M. E. Yazdanshenas, Appl. Surf. Sci., 363, 264 (2016).

    Article  CAS  Google Scholar 

  19. R. Zhou, P. Li, Z. Fan, D. Du, and J. Ouyang, J. Mater. Chem. C, 5, 1544 (2017).

    Article  CAS  Google Scholar 

  20. X. Liu, Z. Qun, Z. Dou, N. Liu, L. Chen, and M. Zhu, RSC Adv., 4, 23869 (2014).

    Article  CAS  Google Scholar 

  21. D. Kongahge, J. Foroughi, S. Gambhir, G. M. Spinks, and G. G. Wallace, RSC Adv., 6, 73203 (2016).

    Article  CAS  Google Scholar 

  22. S.-Y. Lin, T.-Y. Zhang, Q. Lu, D.-Y. Wang, Y. Yang, X.-M. Wu, and T.-L. Ren, RSC Adv., 7, 27001 (2017).

    Article  CAS  Google Scholar 

  23. Wikipedia, https://en.wikipedia.org/wiki/Annealing_(metallurgy).

  24. H. L. Kim and S. H. Lee, Fiber. Polym., 18, 1304 (2017).

    Article  CAS  Google Scholar 

  25. K. Y. Shin, J. Y. Hong, S. G. Lee, and J. S. Jang, J. Mater. Chem., 22, 23404 (2012).

    Article  CAS  Google Scholar 

  26. D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Sh. Chen, Small, 7, 3186 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. H. Jiang, H. Wang, G. Liu, Z. Su, J. Wu, J. Liu, X. Zhan, Y. Chen, and W. Zhou, J. Alloy. Compd., 699, 1049 (2017).

    Article  CAS  Google Scholar 

  28. J. Roesler, H. Harders, and M. Baeker, “Mechanical Behavior of Engineering Materials: Metals, Ceramics, Polymers and Composites”, Springer Science+Business Media, Berlin Heidelberg, Germany, 2007.

    Google Scholar 

  29. N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif, and J.-K. Kim, J. Mater. Chem., 22, 12709 (2012).

    Article  CAS  Google Scholar 

  30. T. Bansala, M. Joshi, S. Mukhopadhyay, R.-A. Doong, and M. Chaudhary, J. Mater. Sci., 52, 1546 (2017).

    Article  CAS  Google Scholar 

  31. C. Garzon and H. Palza, Comp. Sci. Tech., 99, 117 (2014).

    Article  CAS  Google Scholar 

  32. G. Gorrasi, V. Bugatti, C. Milone, E. Mastronardo, E. Piperopoulos, L. Iemmo, and A. D. Bartolomeo, Compos. Pt. B-Eng., 135, 149 (2018).

    Article  CAS  Google Scholar 

  33. H. Pang, C. Chen, Y.-C. Zhang, P.-G. Ren, D.-X. Yan, and Z.-M. Li, Carbon, 49, 1980 (2011).

    Article  CAS  Google Scholar 

  34. X. Yao, B. G. Falzon, S. C. Hawkins, and S. Tsantzalis, Carbon, 129, 486 (2018).

    Article  CAS  Google Scholar 

  35. R. Menzel, S. Barg, M. Miranda, D. B. Anthony, S. M. Bawaked, M. Mokhtar, S. A. Al-Thabaiti, S. N. Basahel, E. Saiz, and M. S. P. Shaffer, Adv. Funct. Mater., 25, 28 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunhee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, S. Characteristics of Electrical Heating Elements Coated with Graphene Nanocomposite on Polyester Fabric: Effect of Different Graphene Contents and Annealing Temperatures. Fibers Polym 19, 965–976 (2018). https://doi.org/10.1007/s12221-018-7825-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7825-8

Keywords

Navigation