Skip to main content
Log in

Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrically conducting, thermally reduced graphene nanosheets (TRG) were synthesized through thermal exfoliation and subsequent annealing of graphene oxide at 800 °C. Thermoplastic polyurethane (TPU)-based nanocomposites with different concentrations (ranging between 0 and 5.5 vol%) of TRG nanosheets were prepared by the solution blending method. Morphology, phase purity, and conducting properties of TPU and TPU/TRG nanocomposites were investigated through scanning electron microscopy, X-ray diffraction, conductive atomic force microscopy (C-AFM) and Raman spectroscopy. C-AFM images show the presence of electrically conducting TRG nanosheets embedded in the TPU matrix. Electromagnetic interference (EMI) shielding measurements were also undertaken on 2-mm-thick rectangular pellets. Shielding parameters such as shielding effectiveness, DC electrical conductivity, and dielectric properties, i.e., real and imaginary parts of permittivity were investigated. Our results show that the TPU/TRG nanocomposite at 5.5 vol% loading exhibits an enhanced electrical conductivity of the order of 3.1 × 10−2 S/m and shows a superior EMI SE of ~−26 to −32 dB in the Ku band frequency region. EMI shielding values were found to be dominated by the material’s absorption behavior. The dielectric properties of TPU/TRG nanocomposites were also analyzed, and they demonstrate a good correlation with EMI shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Liu J, Che R, Chen H, Zhang F, Xia F, Wu Q, Wang M (2012) Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8:1214–1221. doi:10.1002/smll.201102245

    Article  Google Scholar 

  2. Li N, Huang Y, Du F et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141–1145. doi:10.1021/nl0602589

    Article  Google Scholar 

  3. Sambyal P, Singh AP, Verma M, Farukh M, Singh BP, Dhawan SK (2014) Tailored polyaniline/barium strontium titanate/expanded graphite multiphase composite for efficient radar absorption. RSC Adv 4:12614–12624. doi:10.1039/c3ra46479b

    Article  Google Scholar 

  4. Shui X, Chung DDL (1997) Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J Electron Mater 26:928–934. doi:10.1007/s11664-997-0276-4

    Article  Google Scholar 

  5. Joo J, Epstein AJ (1994) Electromagnetic radiation shielding by intrinsically conducting polymers. Appl Phys Lett 65:2278–2280. doi:10.1063/1.112717

    Article  Google Scholar 

  6. Lee CY, Song HG, Jang KS, Oh EJ, Epstein AJ, Joo J (1999) Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth Met 102:1346–1349. doi:10.1016/S0379-6779(98)00234-3

    Article  Google Scholar 

  7. Cao M-S, Wang X-X, Cao W-Q, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3:6589–6599. doi:10.1039/c5tc01354b

    Article  Google Scholar 

  8. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285. doi:10.1016/S0008-6223(00)00184-6

    Article  Google Scholar 

  9. Al-Saleh MH, Saadeh WH, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60:146–156. doi:10.1016/j.carbon.2013.04.008

    Article  Google Scholar 

  10. Wen B, Wang XX, Cao WQ et al (2014) Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6:5754–5761. doi:10.1039/c3nr06717c

    Article  Google Scholar 

  11. Singh AP, Mishra M, Hashim DP et al (2015) Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon 85:79–88. doi:10.1016/j.carbon.2014.12.065

    Article  Google Scholar 

  12. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162. doi:10.1103/RevModPhys.81.109

    Article  Google Scholar 

  13. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777. doi:10.1002/anie.200901678

    Article  Google Scholar 

  14. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi:10.1126/science.1157996

    Article  Google Scholar 

  15. Zhu Y, Stoller MD, Cai W et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233. doi:10.1021/nn901689k

    Article  Google Scholar 

  16. Zhang H-B, Wang J-W, Yan Q, Zheng W-G, Chen C, Yu Z-Z (2011) Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J Mater Chem 21:5392–5397. doi:10.1039/c1jm10099h

    Article  Google Scholar 

  17. Lv W, Tang D-M, He Y-B et al (2009) Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 3:3730–3736. doi:10.1021/nn900933u

    Article  Google Scholar 

  18. Chen C-M, Zhang Q, Yang M-G, Huang C-H, Yang Y-G, Wang M-Z (2012) Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon 50:3572–3584. doi:10.1016/j.carbon.2012.03.029

    Article  Google Scholar 

  19. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. doi:10.1021/nl802558y

    Article  Google Scholar 

  20. Areshkin DA, White CT (2007) Building blocks for integrated graphene circuits. Nano Lett 7:3253–3259. doi:10.1021/nl070708c

    Article  Google Scholar 

  21. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613. doi:10.1021/ac900136z

    Article  Google Scholar 

  22. Khan U, May P, O’Neill A, Coleman JN (2010) Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48:4035–4041. doi:10.1016/j.carbon.2010.07.008

    Article  Google Scholar 

  23. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833. doi:10.1016/j.carbon.2010.06.047

    Article  Google Scholar 

  24. Verma M, Verma P, Dhawan SK, Choudhary V (2015) Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv 5:97349–97358. doi:10.1039/c5ra17276d

    Article  Google Scholar 

  25. Husić S, Javni I, Petrović ZS (2005) Thermal and mechanical properties of glass reinforced soy-based polyurethane composites. Compos Sci Technol 65:19–25. doi:10.1016/j.compscitech.2004.05.020

    Article  Google Scholar 

  26. Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97. doi:10.1016/j.indcrop.2011.06.025

    Article  Google Scholar 

  27. Chen Z, Lu H (2012) Constructing sacrificial bonds and hidden lengths for ductile graphene/polyurethane elastomers with improved strength and toughness. J Mater Chem 22:12479–12490. doi:10.1039/c2jm30517h

    Article  Google Scholar 

  28. Valentini M, Piana F, Pionteck J, Lamastra FR, Nanni F (2015) Electromagnetic properties and performance of exfoliated graphite (EG)—thermoplastic polyurethane (TPU) nanocomposites at microwaves. Compos Sci Technol 114:26–33. doi:10.1016/j.compscitech.2015.03.006

    Article  Google Scholar 

  29. Kumar A, Alegaonkar PS (2015) Impressive transmission mode electromagnetic interference shielding parameters of graphene-like nanocarbon/polyurethane nanocomposites for short range tracking countermeasures. ACS Appl Mater Interfaces 7:14833–14842. doi:10.1021/acsami.5b03122

    Article  Google Scholar 

  30. Hsiao S-T, Ma C-CM, Tien H-W et al (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60:57–66. doi:10.1016/j.carbon.2013.03.056

    Article  Google Scholar 

  31. Hsiao S-T, Ma C-CM, Tien H-W et al (2015) Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl Mater Interfaces 7:2817–2826. doi:10.1021/am508069v

    Article  Google Scholar 

  32. Yang L, Phua SL, Toh CL et al (2013) Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. RSC Adv 3:6377–6385. doi:10.1039/c3ra23307c

    Article  Google Scholar 

  33. Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778. doi:10.1021/cm981085u

    Article  Google Scholar 

  34. Wang D, Bao Y, Zha J-W, Zhao J, Dang Z-M, Hu G-H (2012) Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene. ACS Appl Mater Interfaces 4:6273–6279. doi:10.1021/am3018652

    Article  Google Scholar 

  35. Wang D, Zhang X, Zha J-W, Zhao J, Dang Z-M, Hu G-H (2013) Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold. Polymer 54:1916–1922. doi:10.1016/j.polymer.2013.02.012

    Article  Google Scholar 

  36. Kumar R, Kumari S, Dhakate S (2015) Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness. Appl Nanosci 5:553–561. doi:10.1007/s13204-014-0349-7

    Article  Google Scholar 

  37. Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc Lon A 362:2271–2288. doi:10.1098/rsta.2004.1454

    Article  Google Scholar 

  38. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  Google Scholar 

  39. Bhandari H, Singh S, Choudhary V, Dhawan SK (2011) Conducting films of poly(aniline-co-1-amino-2-naphthol-4-sulfonic acid) blended with LDPE for its application as antistatic encapsulation material. Polymer Adv Technol 22:1319–1328. doi:10.1002/pat.1612

    Google Scholar 

  40. Gornicka B, Mazur M, Sieradzka K, Prociow E, Lapinski M (2010) Antistatic properties of nanofilled coatings. Acta Phys Pol A 117:869–872. doi:10.12693/aphyspola.117.869

    Article  Google Scholar 

  41. Aharony A, Stauffer D (2003) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  42. Weber M, Kamal MR (1997) Estimation of the volume resistivity of electrically conductive composites. Polym Composite 18:711–725. doi:10.1002/pc.10324

    Article  Google Scholar 

  43. Hsiao S-T, Ma C-CM, Liao W-H et al (2014) Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl Mater Interfaces 6:10667–10678. doi:10.1021/am502412q

    Article  Google Scholar 

  44. Verma M, Singh AP, Sambyal P, Singh BP, Dhawan SK, Choudhary V (2015) Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding. Phys Chem Chem Phys 17:1610–1618. doi:10.1039/c4cp04284k

    Article  Google Scholar 

  45. Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/Graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Appl Mater Interfaces 5:4712–4724. doi:10.1021/am400658h

    Article  Google Scholar 

  46. Singh K, Ohlan A, Pham VH et al (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5:2411–2420. doi:10.1039/c3nr33962a

    Article  Google Scholar 

  47. Klemens PG, Pedraza DF (1994) Thermal conductivity of graphite in the basal plane. Carbon 32:735–741. doi:10.1016/0008-6223(94)90096-5

    Article  Google Scholar 

  48. Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71:1563–1568. doi:10.1016/j.compscitech.2011.06.014

    Article  Google Scholar 

  49. Yousefi N, Sun X, Lin X et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487. doi:10.1002/adma.201305293

    Article  Google Scholar 

  50. Zhu J, Wei S, Haldolaarachchige N, Young DP, Guo Z (2011) electromagnetic field shielding polyurethane nanocomposites reinforced with core–shell Fe–silica nanoparticles. J Phys Chem C 115:15304–15310. doi:10.1021/jp2052536

    Article  Google Scholar 

  51. Bernal MM, Martin-Gallego M, Molenberg I, Huynen I, López Manchado MA, Verdejo R (2014) Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Adv 4:7911–7918. doi:10.1039/c3ra45607b

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Ministry of Human Resource Development (MHRD), India for providing financial assistance and IIT Delhi for providing all the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangala Joshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansala, T., Joshi, M., Mukhopadhyay, S. et al. Electrically conducting graphene-based polyurethane nanocomposites for microwave shielding applications in the Ku band. J Mater Sci 52, 1546–1560 (2017). https://doi.org/10.1007/s10853-016-0449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0449-8

Keywords

Navigation