Skip to main content
Log in

Electrical properties of graphene/waterborne polyurethane composite films

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Graphene is classified as a carbon-based material. Structurally, graphene is made up of carbon-based two-dimensional atomic crystals and a one atom thick planar sheet of sp2-bonded carbon atoms. This sort of arrangement in graphene makes it a unique material with exceptional mechanical, physicochemical, thermal, electrical, optical, and biomedical properties. Methods for graphene-based fabric production mainly use graphene-based materials such as graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) coated on fabric or yarn. Waterborne polyurethane (WPU) is one of the most rapidly developing and active branches of polyurethane chemistry. More and more attention is being paid to graphene-coated fabrics owing to their low temperature flexibility, the presence of zero or very few VOCs (volatile organic compounds), water resistance, pH stability, superior solvent resistance, excellent weathering resistance, and desirable chemical and mechanical properties. It is used as a coating agent or adhesive for fibers, textiles, and leather. Also, graphene-containing materials have been used to enhance the properties of WPU. In this study, graphene/WPU composite solution and film was prepared to conduct basic research for developing electrical heating textiles which is not harmful to the human body, flexible and excellent in electrical properties. Graphene/WPU composite solutions were prepared with a graphene content of 0, 2, 4, 8, and 16 wt%, and graphene/WPU film was prepared with solution casting method. The graphene contents were analyzed for their surface morphology, electrical properties, and electrical heating properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Lee, J. M. Youn, J. Kwon, and S. W. Kim, Polym. Sci. Technol., 22, 130 (2011).

    CAS  Google Scholar 

  2. J. Molina, “Graphene-based Fabrics and Their Applications: A Review”, RSC Adv., 6, 68261 (2016).

    Article  CAS  Google Scholar 

  3. X. Ji, Y. Xu, W. Zhang, L. Cui, and J. Liu, Compos. Pt. AAppl. Sci. Manuf., 87, 29 (2016).

    Article  CAS  Google Scholar 

  4. J. Canales, M. E. Munoz, M. Fernandez, and A. Santamaria, Compos. Pt. A-Appl. Sci. Manuf., 84, 9 (2016).

    Article  CAS  Google Scholar 

  5. X. Liu, Z. Qun, Z. Dou, N. Liu, L. Chen, and M. Zhu, RSC Adv., 4, 23869 (2014).

    Article  CAS  Google Scholar 

  6. A. Noreen, K. M. Zia, M. Zuber, S. Tabasum, and M. J. Saif, Korean J. Chem. Eng., 33, 388 (2016).

    Article  CAS  Google Scholar 

  7. X. Zhou, Y. Li, C. Fang, S. Li, Y. Cheng, W. Lei, and X. Meng, J. Mater. Sci. Technol., 31, 708 (2015).

    Article  CAS  Google Scholar 

  8. J. O. Akindoyo, M. D. H. Geg, S. Ghazali, M. R. Islam, N. Jeyaratnamm, and A. R. Yuvaraj, RSC Adv., 6, 114453 (2016).

    Article  CAS  Google Scholar 

  9. B. Ghosh, S. Gogoi, S. Thakur, and N. Karak, Prog. Org. Coat., 90, 324 (2016).

    Article  CAS  Google Scholar 

  10. Z. Wang, W. Wang, Z. Jiang, and D. Yu, Appl. Surf. Sci., 396, 208 (2017).

    Article  CAS  Google Scholar 

  11. P. Li, D. Du, L. Guo, U. Guo, and J. Ouyang, J. Mater. Chem. C., 4, 6525 (2016).

    Article  CAS  Google Scholar 

  12. L. Qu, M. Tian, X. Hu, Y. Wang, S. Zhu, X. Guo, G. Han, X. Zhang, K. Sun, and X. Tang, Carbon, 80, 565 (2014).

    Article  CAS  Google Scholar 

  13. X. Luo, P. Zhang, R. Liu, W. Li, B. Ge, and M. Cao, Polym. Int., 65, 415 (2016).

    Article  CAS  Google Scholar 

  14. X. Hu, M. Tian, L. Qu, S. Zhu, and G. Han, Carbon, 95, 625 (2015).

    Article  CAS  Google Scholar 

  15. X. Wang, W. Xing, L. Song, H. Yang, Y. Hu, and G. H. Yeoh, Surf. Coat. Technol., 206, 4778 (2012).

    Article  CAS  Google Scholar 

  16. H. S. Kang and S. H. Lee, J. Korean Soc. Cloth. Text., 39, 247 (2015).

    Article  Google Scholar 

  17. K. Y. Shin, J. Y. Hong, S. G. Lee, and J. S. Jang, J. Mater. Chem., 22, 23404 (2012).

    Article  CAS  Google Scholar 

  18. D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, Small, 22, 3186 (2011).

    Article  Google Scholar 

  19. R. Verdejo, M. M. Bernal, L. J. Romasanta, and M. A. L. Manchado, J. Mater. Chem., 21, 3301 (2011).

    Article  CAS  Google Scholar 

  20. J. J. Cha and J. H. Yim, Poylmer(Korea), 37, 507 (2013).

    CAS  Google Scholar 

  21. J. Y. Kwon, M. M. Rahman, and H. D. Kim, Fiber. Polym., 7, 95 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunhee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, S. Electrical properties of graphene/waterborne polyurethane composite films. Fibers Polym 18, 1304–1313 (2017). https://doi.org/10.1007/s12221-017-7142-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7142-7

Keywords

Navigation