Skip to main content
Log in

Surface Treated Jute Fiber Induced Foam Microstructure Development in Poly(lactic acid)/Jute Fiber Biocomposites and their Biodegradation Behavior

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA)/jute fiber biocomposites with: i) untreated jute fiber, ii) NaOH treated jute fiber, and iii) (NaOH+silane) treated jute fibers were prepared by melt extrusion process. Microcellular foaming of the injection molded samples was carried out by using single stage batch process. The effects of jute fiber content as well as that of matrix-fiber phase adhesion, in composites with surface treated jute fibers, on the foam microstructure were studied. Further, water absorption, thickness swelling, and biodegradation behavior of the foamed biocomposites were studied and correlated with their foam microstructures. It was observed that on increasing jute fiber content in PLA/JFU biocomposites, cell density increased from 6.5×107 to 8.1×107, while the cell size and expansion ratio decreased from 40 to 23 μm and 2.41 to 1.45, respectively. Again, on increasing the extent of the jute fiber surface treatment in the biocomposites, cell size and expansion ratio increased from 40 to 78 μm and 2.41 to 2.80 respectively. This study also revealed that the rate of biodegradation accelerated with increase in the jute fiber content in the biocomposites while the same retarded with increase in the extent of jute fiber surface treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-M. Lai, R.-C. Hsu, C.-Y. Hsieh, and F.-C. Chiu, J. Mater. Sci., 50, 2272 (2015).

    Article  CAS  Google Scholar 

  2. H. Zhao, Z. Cui, X. Wang, L.-S. Turng, and X. Peng, Compos. Pt. B-Eng., 51, 79 (2013).

    Article  CAS  Google Scholar 

  3. L. M. Matuana, Bioresour. Technol., 99, 3643 (2008).

    Article  CAS  Google Scholar 

  4. L. M. Matuana and C. A. Diaz, Ind. Eng. Chem. Res., 49, 2186 (2010).

    Article  CAS  Google Scholar 

  5. S. A. Hinchcliffe, K. M. Hess, and W. V. Srubar, Compos. Pt. B-Eng., 95, 346 (2016).

    Article  CAS  Google Scholar 

  6. B. Jeon, H. K. Kim, S. W. Cha, S. J. Lee, M.-S. Han, and K. S. Lee, Int. J. Precis. Eng. Man., 14, 679 (2013).

    Article  Google Scholar 

  7. L. J. M. Jacobs, M. F. Kemmere, and J. T. F. Keurentjes, Green Chem., 10, 731 (2008).

    Article  CAS  Google Scholar 

  8. D. Sanli, S. Bozbag, and C. Erkey, J. Mater. Sci., 47, 2995 (2012).

    Article  CAS  Google Scholar 

  9. L. Chen, D. Rende, L. S. Schadler, and R. Ozisik, J. Mater. Chem. A, 1, 3837 (2013).

    Article  CAS  Google Scholar 

  10. C.-C. Kuo, L.-C. Liu, W.-C. Liang, H.-C. Liu, and C.-M. Chen, Compos. Pt. B-Eng., 79, 1 (2015).

    Article  Google Scholar 

  11. C. Zhou, P. Wang, and W. Li, Compos. Pt. B-Eng., 42, 318 (2011).

    Article  Google Scholar 

  12. S. K. Goel and E. J. Beckman, Polym. Eng. Sci., 34, 1148 (1994).

    Article  CAS  Google Scholar 

  13. J. Wang, Q. Ren, W. Zheng, and W. Zhai, Ind. Eng. Chem. Res., 53, 1422 (2014).

    Article  CAS  Google Scholar 

  14. K. Mizoguchi, T. Hirose, Y. Naito, and Y. Kamiya, Polymer, 28, 1298 (1987).

    Article  CAS  Google Scholar 

  15. Y. Chang and Q. Xu, Chem. Lett., 1008 (2002).

    Google Scholar 

  16. Q. Xu, Y. Chang, J. He, B. Han, and Y. Liu, Polymer, 44, 5449 (2003).

    Article  CAS  Google Scholar 

  17. L.-Q. Xu and H.-X. Huang, Ind. Eng. Chem. Res., 53, 2277 (2014).

    Article  CAS  Google Scholar 

  18. H. Jameel, J. Waldman, and L. Rebenfeld, J. Appl. Polym. Sci., 26, 1795 (1981).

    Article  CAS  Google Scholar 

  19. P. Makarewicz and G. Wilkes, J. Polym. Sci. Polym. Phys. Ed., 16, 1559 (1978).

    Article  CAS  Google Scholar 

  20. Q. Xu, Q. Peng, W. Ni, Z. Hou, J. Li, and L. Yu, J. Appl. Polym. Sci., 100, 2901 (2006).

    Article  CAS  Google Scholar 

  21. D. J. Kang, D. Xu, Z. X. Zhang, K. Pal, D. S. Bang, and J. K. Kim, Macromol. Mater. Eng., 294, 620 (2009).

    Article  CAS  Google Scholar 

  22. L. M. Matuana and O. Faruk, eXPRESS Polym. Lett., 4, 621 (2010).

    Article  CAS  Google Scholar 

  23. S. Pilla, A. Kramschuster, J. Lee, G. K. Auer, S. Gong, and L.-S. Turng, Compos. Interfaces, 16, 869 (2009).

    Article  CAS  Google Scholar 

  24. A. Hao, Y. Geng, Q. Xu, Z. Lu, and L. Yu, J. Appl. Polym. Sci., 109, 2679 (2008).

    Article  CAS  Google Scholar 

  25. C. I. Boissard, P.-E. Bourban, C. J. G. Plummer, R. C. Neagu, and J.-A. E. Månson, J. Cell. Plast., 48, 445 (2012).

    Article  CAS  Google Scholar 

  26. M. Zafar, N. Zarrinbakhsh, A. Mohanty, M. Misra, S. Maiti, and A. Ghosh, eXPRESS Polym. Lett., 10, 176 (2016).

    Article  CAS  Google Scholar 

  27. J. Dlouha, L. Suryanegara, and H. Yano, Soft Matter, 8, 8704 (2012).

    Article  CAS  Google Scholar 

  28. Y. Yang, T. Ota, T. Morii, and H. Hamada, J. Mater. Sci., 46, 2678 (2011).

    Article  CAS  Google Scholar 

  29. E. Sinha and S. Rout, J. Mater. Sci., 43, 2590 (2008).

    Article  CAS  Google Scholar 

  30. N. Reddy, D. Nama, and Y. Yang, Polym. Degrad. Stab., 93, 233 (2008).

    Article  CAS  Google Scholar 

  31. M. T. Zafar, S. N. Maiti, and A. K. Ghosh, Fiber. Polym., 17, 266 (2016).

    Article  CAS  Google Scholar 

  32. M. T. Zafar, S. N. Maiti, and A. K. Ghosh, RSC Adv., 6, 73373 (2016).

    Article  CAS  Google Scholar 

  33. H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, and Z.-Z. Yu, ACS Appl. Mater. Interfaces, 3, 918 (2011).

    Article  CAS  Google Scholar 

  34. L. M. Matuana and C. A. Diaz, Ind. Eng. Chem. Res., 52, 12032 (2013).

    Article  CAS  Google Scholar 

  35. D. Kohlhoff and M. Ohshima, Macromol. Mater. Eng., 296, 770 (2011).

    Article  CAS  Google Scholar 

  36. S.-S. Hwang, P. P. Hsu, J.-M. Yeh, K.-C. Chang, and Y.-Z. Lai, Polym. Compos., 30, 1625 (2009).

    Article  CAS  Google Scholar 

  37. H. Zhao, G. Zhao, L.-S. Turng, and X. Peng, Ind. Eng. Chem. Res., 54, 7122 (2015).

    Article  CAS  Google Scholar 

  38. T. Tábi, A. Z. Égerházi, P. Tamás, T. Czigány, and J. G. Kovács, Compos. Pt. A-Appl. Sci. Manuf., 64, 99 (2014).

    Article  Google Scholar 

  39. D. Battegazzore, S. Bocchini, and A. Frache, eXPRESS Polym. Lett., 5, 849 (2011).

    Article  CAS  Google Scholar 

  40. A. Yussuf, I. Massoumi, and A. Hassan, J. Polym. Environ., 18, 422 (2010).

    Article  CAS  Google Scholar 

  41. J. Wang, W. Zhu, H. Zhang, and C. B. Park, Chem. Eng. Sci., 75, 390 (2012).

    Article  CAS  Google Scholar 

  42. M. Takada, S. Hasegawa, and M. Ohshima, Polym. Eng. Sci., 44, 186 (2004).

    Article  CAS  Google Scholar 

  43. L. M. Matuana, C. B. Park, and J. J. Balatinecz, Polym. Eng. Sci., 37, 1137 (1997).

    Article  CAS  Google Scholar 

  44. Q. Li and L. M. Matuana, J. Appl. Polym. Sci., 88, 3139 (2003).

    Article  CAS  Google Scholar 

  45. F. Mengeloglu and L. M. Matuana, J. Vinyl Add. Tech., 7, 142 (2001).

    Article  CAS  Google Scholar 

  46. L. M. Matuana and F. Mengeloglu, J. Vinyl Add. Tech., 8, 264 (2002).

    Article  CAS  Google Scholar 

  47. L. Matuana-Malanda, C. B. Park, and J. J. Balatinecz, J. Cell. Plast., 32, 449 (1996).

    Article  CAS  Google Scholar 

  48. F. Sarasini, J. Tirill, D. Puglia, J. M. Kenny, F. Dominici, C. Santulli, M. Tofani, and R. De Santis, RSC Adv., 5, 23798 (2015).

    Article  CAS  Google Scholar 

  49. M. Thwe and K. Liao, J. Mater. Sci., 38, 363 (2003).

    Article  CAS  Google Scholar 

  50. H. Zou, L. Wang, H. Gan, and C. Yi, Polym. Compos., 33, 1659 (2012).

    Article  CAS  Google Scholar 

  51. B. Singh, M. Gupta, and A. Verma, Polym. Compos., 17, 910 (1996).

    Article  CAS  Google Scholar 

  52. S. Ochi, Mech. Mater., 40, 446 (2008).

    Article  Google Scholar 

  53. T. Ohkita and S. H. Lee, J. Appl. Polym. Sci., 100, 3009 (2006).

    Article  CAS  Google Scholar 

  54. T. Bayerl, M. Geith, A. A. Somashekar, and D. Bhattacharyya, Int. Biodeterior. Biodegrad., 96, 18 (2014).

    Article  Google Scholar 

  55. E. Petinakis, X. Liu, L. Yu, C. Way, P. Sangwan, K. Dean, S. Bateman, and G. Edward, Polym. Degrad. Stab., 95, 1704 (2010).

    Article  CAS  Google Scholar 

  56. R. Neppalli, V. Causin, C. Marega, M. Modesti, R. Adhikari, S. Scholtyssek, S. S. Ray, and A. Marigo, Appl. Clay Sci., 87, 278 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Kumar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, M.T., Kumar, S., Singla, R.K. et al. Surface Treated Jute Fiber Induced Foam Microstructure Development in Poly(lactic acid)/Jute Fiber Biocomposites and their Biodegradation Behavior. Fibers Polym 19, 648–659 (2018). https://doi.org/10.1007/s12221-018-7428-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-7428-4

Keywords

Navigation