Skip to main content
Log in

Structural difference of gel-spun ultra-high molecular weight polyethylene fibers affected by cold drawing process

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The UHMWPE fibers with different cold drawing ratio (DR0) were obtained from the industrial UHMWPE fibers production line. The effect of cold drawing before the extraction of paraffin oil process on final fibers was investigated by tensile testing, small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). The tensile strength and modulus with 5.0 DR0 were 2.99 and 151.5 GPa, respectively, which were 13.3 % and 41.9 % higher than those with 1.5 DR0. With the increase of DR0, the values of average shish length decreased obviously, while the shish orientation increased and the apparent crystal size along two lattice directions ((110)o and (200)o) in UHMWPE fibers decreased. The increase of degree of orientation and crystallization were verified that better folded chains and amorphous chains were involved in forming shorter and better oriented shish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Xia, P. Xi, and B. W. Cheng, Mater. Lett., 147, 79 (2015).

    Article  CAS  Google Scholar 

  2. L. Shen, M. Peng, F. Qiao, and J. L. Zhang, Chin. J. Polym. Sci., 26, 653 (2008).

    Article  CAS  Google Scholar 

  3. H. J. Xu, M. F. An, Y. Lv, Z. B. Wang, and Q. Gu, Chin. J. Polym. Sci., 34, 1 (2016).

    Article  Google Scholar 

  4. A. Zwijnenburg, P. F. Van Hutten, A. J. Pennings, and H. D. Chanzy, Colloid Polym. Sci., 256, 729 (1978).

    Article  CAS  Google Scholar 

  5. Y. L. Hsieh and X. P. Hu, J. Polym. Sci. Polym. Phys., 35, 623 (1997).

    Article  CAS  Google Scholar 

  6. V. M. Litvinov, J. J. Xu, C. Melian, D. E. Demco, M. Möller, and J. Simmelink, Macromolecules, 44, 9254 (2011).

    Article  CAS  Google Scholar 

  7. I. Steyaert, M. P. Delplancke, G. V. Assche, H. Rahier, and K. D. Clerck, Polymer, 54, 6809 (2013).

    Article  CAS  Google Scholar 

  8. E. L. Heeley, T. Gough, D. J. Hughes, W. Bras, J. Rieger, and A. J. Ryan, Polymer, 54, 6580 (2013).

    Article  CAS  Google Scholar 

  9. Y. Ohta, H. Murase, and T. J. Hashimoto, J. Polym. Sci. Polym. Phys., 48, 1861 (2010).

    Article  CAS  Google Scholar 

  10. M. Xiao, J. Yu, J. Zhu, L. Chen, J. Zhu, and Z. Hu, J. Mater. Sci., 46, 5690 (2011).

    Article  CAS  Google Scholar 

  11. B. Kalb and A. J. Pennings, J. Mater. Sci., 15, 2584 (1980).

    Article  CAS  Google Scholar 

  12. J. Smook and A. J. Pennings, J. Appl. Polym. Sci., 27, 2209 (1982).

    Article  CAS  Google Scholar 

  13. W. Hoogsteen, G. Ten Brinke, and A. J. Pennings, J. Mater. Sci., 25, 1551 (1990).

    Article  CAS  Google Scholar 

  14. F. Tian, X. H. Li, Y. Z. Wang, C. M. Yang, P. Zhou, J. Y. Lin, J. R. Zeng, C. X. Hong, W. Q. Hua, X. Y. Li, X. R. Miao, F. G. Bian, and J. Wang, Nucl. Sci. Tech., 26, 1 (2015).

    Google Scholar 

  15. A. P. Hammersley, S. O. Svensson, and A. Thompson, Nucl. Instrum. Methods Phys. Res., Sect. A, 346, 312 (1994).

    Article  CAS  Google Scholar 

  16. L. E. Alexander, “X-ray Diffraction in Polymer Science”, Wiley: New York, 1969.

    Google Scholar 

  17. N. A. J. M. Van Aerle, and A. W. M. Braam, J. Mater. Sci., 23, 4429 (1988).

    Article  Google Scholar 

  18. W. Ruland, J. Polym. Sci. Part C: Polym. Symp., 28, 143 (1969).

    Article  Google Scholar 

  19. W. Ruland and R. Perret, J. Appl. Crystallogr., 2, 209 (1969).

    Article  Google Scholar 

  20. W. Ruland and R. Perret, J. Appl. Crystallogr., 3, 525 (1970).

    Article  Google Scholar 

  21. W. O. Statton, J. Appl. Phys., 38, 4149 (1967).

    Article  CAS  Google Scholar 

  22. K. Furuhata, T. Yokokawa, C. Seoul, and K. MiyasakaI, J. Polym. Sci. Polym. Phys., 24, 59 (1986).

    Article  CAS  Google Scholar 

  23. J. Smook and A. J. Pennings, J. Appl. Polym. Sci., 27, 2209 (1982).

    Article  CAS  Google Scholar 

  24. W. Hoogsteen, A. J. Pennings, and G. Tenbrinke, Colloid Polym. Sci., 268, 245 (1990).

    Article  CAS  Google Scholar 

  25. A. J. Pennings and J. Smook, J. Mater. Sci., 19, 3443 (1984).

    Article  CAS  Google Scholar 

  26. D. Krueger and G. S. Y. Yeh, J. Polym. Sci. Polym. Phys., 6, 431 (1972).

    CAS  Google Scholar 

  27. J. T. Yeh, S. C. Lin, C. W. Tu, K. H. Hsie, and F. C. Chang, J. Mater. Sci., 43, 4892 (2008).

    Article  CAS  Google Scholar 

  28. V. M. Litvinov, J. J. Xu, C. Melian, D. E. Demco, and M. Moller, Macromolecules, 44, 9254 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongbao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, M., Xu, H., Lv, Y. et al. Structural difference of gel-spun ultra-high molecular weight polyethylene fibers affected by cold drawing process. Fibers Polym 18, 549–554 (2017). https://doi.org/10.1007/s12221-017-6399-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6399-1

Keywords

Navigation