Skip to main content
Log in

Improve the thermal and mechanical properties of poly(L-lactide) by forming nanocomposites with pristine vermiculite

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(L-lactide) (PLLA)/pristine vermiculite nanocomposites were prepared by melt blending in a twin-screw extruder, and the detailed information of vermiculite dispersion state and effect of vermiculite on thermal and mechanical properties were systematically studied. The results show that the dispersion of vermiculite in the matrix is quite well when the loading content does not exceed 3 wt%. Pristine vermiculite can obviously improve the melt-crystallization temperature during the nonisothermal crystallization. Both crystallization time span and spherulitic size of PLLA decrease with the increasing amount of vermiculite under isothermal crystallization condition by enhancing the primary nucleation of PLLA. And the adding vermiculite can also improve the tensile modulus and Izod impact strength of PLLA. The intrinsic mechanism for the nucleating effect of vermiculite on PLLA is proposed to be the epitaxial crystallization and specific interaction between vermiculite and PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G.Q. and Patel, M.K., Chem. Rev., 2011, 112: 2082

    Article  Google Scholar 

  2. Lim, L.T., Auras, R. and Rubino, M., Prog. Polym. Sci., 2008, 33: 820

    Article  CAS  Google Scholar 

  3. Saeidlou, A., Huneault, M.A., Li, H. and Park, C.B., Prog. Polym. Sci., 2012, 37: 1657

    Article  CAS  Google Scholar 

  4. Li, H. and Huneault, M.A., Polymer, 2007, 48: 6855

    Article  CAS  Google Scholar 

  5. Ray, S.S., Pralay, M., Masami, O., Kazunobu, Y. and Kazue, U., Macromolecules, 2002, 35: 3104

    Article  CAS  Google Scholar 

  6. Liao, R., Yang, B., Yu, W. and Zhou, C., J. Appl. Polym. Sci., 2007, 104: 310

    Article  CAS  Google Scholar 

  7. Kolstad, J.J., J. Appl. Polym. Sci., 1996, 62: 1079

    Article  CAS  Google Scholar 

  8. Pan, H. and Qiu, Z., Macromolecules, 2010, 43: 1499

    Article  CAS  Google Scholar 

  9. Li, J., Chen, D., Gui, B., Gu, M. and Ren, J., Polym. Bull., 2011, 67: 775

    Article  CAS  Google Scholar 

  10. Li, C. and Dou, Q., Thermochim. Acta, 2014, 594: e31

    Google Scholar 

  11. Tang, Z., Zhang, C., Liu, X. and Zhu, J., J. Appl. Polym. Sci., 2012, 125: 1108

    Article  CAS  Google Scholar 

  12. Qiu, Z. and Li, Z., Ind. Eng. Chem. Res., 2011, 50: 12299

    Article  CAS  Google Scholar 

  13. Weng, M., Qiu, Z., Thermochim. Acta, 2014, 577: 41

    Article  CAS  Google Scholar 

  14. Zhao, Y., Qiu, Z. and Yang, W., J. Phys. Chem. B, 2008, 112: 16461

    Article  CAS  Google Scholar 

  15. Wang, H. and Qiu, Z., Thermochim. Acta, 2011, 526: 229

    Article  CAS  Google Scholar 

  16. Qiu, Z. and Guan, W., RSC Adv., 2014, 4: 9463

    Article  CAS  Google Scholar 

  17. Schmidt, S.C. and Hillmyer, M.A., J. Polym. Sci., Part B: Polym. Phys., 2001, 39: 300

    Article  CAS  Google Scholar 

  18. Pan, P., Shan, G. and Bao, Y., Ind. Eng. Chem. Res., 2014, 53: 3148

    Article  CAS  Google Scholar 

  19. Zhao, Y. and Qiu, Z., RSC Adv., 2015, 5: 49216

    Article  CAS  Google Scholar 

  20. Tjong, S.C., Meng, Y.Z. and Hay, A.S., Chem. Mater., 2002, 14: 44

    Article  CAS  Google Scholar 

  21. Tjong, S.C., Meng, Y.Z. and Xu, Y., J. Polym. Sci., Part B: Polym. Phys., 2002, 40: 2860

    Article  CAS  Google Scholar 

  22. Takahashi, S., Goldberg, H.A., Feeney, C.A., Karim, D.P., Farrell, M., O’Leary, K. and Paul, D.R., Polymer, 2006, 47: 3083

    Article  CAS  Google Scholar 

  23. Fernández, M.J., Fernández, M.D. and Aranburu, I., Eur. Polym. J., 2013, 49: 1257

    Article  Google Scholar 

  24. Fernández, M.J., Fernández, M.D. and Aranburu, I., Appl. Clay Sci., 2013, 80–81: 372

    Article  Google Scholar 

  25. Williams-Daryn, S. and Thomas, R.K., J. Colloid Interf. Sci., 2002, 255: 303

    Article  CAS  Google Scholar 

  26. Hoogsteen, W., Postema, A.R., Pennings, A.J., Brinke, G.T. and Zugenmaier, P., Macromolecules, 1990, 23: 634

    Article  CAS  Google Scholar 

  27. Fisher, E.W., Sterzel, H.J. and Wegner, G., Kollid-Z Z Polym., 1973, 25: 980

    Article  Google Scholar 

  28. Avrami, M.J., Chem. Phys., 1939, 7: 1103

    CAS  Google Scholar 

  29. Avrami, M.J., Chem. Phys., 1940, 8: 212

    CAS  Google Scholar 

  30. Avrami, M.J., Chem. Phys., 1941, 9: 177

    CAS  Google Scholar 

  31. Lorenzo, A.T., Arnal, M.L., Albuerne, J. and Müller, A.J., Polym. Test., 2007, 26: 222

    Article  CAS  Google Scholar 

  32. Yoon, J.T., Jeong, Y.G., Lee, S.C. and Min, B.G., Polym. Adv. Technol., 2009, 20: 631

    Article  CAS  Google Scholar 

  33. Krishnamachari, P., Zhang, J., Lou, J., Yan, J. and Uitenham, L., Int. J. Polym. Anal. Charact., 2009, 14: 336

    Article  CAS  Google Scholar 

  34. Murariu, M., Dechief, A.L., Bonnaud, L., Paint, Y., Gallos, A., Fontaine, G., Bourbigot, S. and Dubois, P., Polym. Degrad. Stab., 2010, 95: 889

    Article  CAS  Google Scholar 

  35. Kim, I.H. and Jeong, Y.G., J. Polym. Sci., Part B: Polym. Phys., 2010, 48: 850

    Article  CAS  Google Scholar 

  36. Hong, Z., Zhang, P., He, C., Qiu, X., Liu, A., Chen, L., Chen, X. and Jing, X., Biomaterials, 2005, 26: 6296

    Article  CAS  Google Scholar 

  37. Legras, R., Mercier, J.P. and Nield, E., Nature, 1983, 304: 432

    Article  CAS  Google Scholar 

  38. Wittmann, J.C. and Lotz, B., Prog. Polym. Sci., 1990, 15: 909

    Article  CAS  Google Scholar 

  39. Meaurio, E., López-Rodríguez, N. and Sarasua, J.R., Macromolecules, 2006, 39: 9291

    Article  CAS  Google Scholar 

  40. Meaurio, E., Zuza, E., López-Rodríguez, N. and Sarasua, J.R., J. Phys. Chem. B, 2006, 110: 5790

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-mu Ye  (叶海木).

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. 21304108) and the Science Foundation of China University of Petroleum-Beijing (No. YJRC-2013-14, 2462013BJRC001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Hm., Hou, K. & Zhou, Q. Improve the thermal and mechanical properties of poly(L-lactide) by forming nanocomposites with pristine vermiculite. Chin J Polym Sci 34, 1–12 (2016). https://doi.org/10.1007/s10118-016-1724-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-016-1724-5

Keywords

Navigation