Skip to main content
Log in

Enzymatic scouring and low-temperature bleaching of fabrics constructed from cotton, regenerated bamboo, poly(lactic acid), and soy protein fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the present study, fabrics constructed from cotton, regenerated bamboo, poly(lactic acid), and soy protein fibers were scoured with pectinase enzymes, bleached with different bleaching processes using peracetic acid (PAA), and conventionally bleached with hydrogen peroxide (HP). The enzymatic scouring and bleaching with PAA have been chosen in order to minimize fiber damage and to perform the processes in more benign conditions. PAA was added to the bleaching bath in the form of a commercial solution or it was produced in situ in the presence of HP with the addition of a bleach activator, tetraacetylethylenediamine (TAED), or arylesterase enzymes. The conventional process was performed at 90 °C in highly alkaline pH media, and the bleaching processes with PAA were performed at 65 °C in neutral to slightly alkaline pH media. The results revealed that after the enzymatic scouring, the hydrophilicity of the fabrics is adequate. Compared with the cotton fibers, the regenerated bamboo and especially the poly(lactic) acid and soy protein fibers are significantly damaged during conventional HP bleaching. By contrast, bleaching with PAA revealed a strong whitening ability that is comparable to that of conventional bleaching with HP but with substantially reduced fiber damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Erdumlu and B. Ozipek, Fibres Text. East. Eur., 16, 43 (2008).

    CAS  Google Scholar 

  2. W. Yueping, Text. Res. J., 80, 334 (2010).

    Article  Google Scholar 

  3. B. Lipp-Symonowicz, S. Sztajnowski, and D. Wojciechowska, Fibres Text. East. Eur., 19, 18 (2011).

    CAS  Google Scholar 

  4. J. R. Dorgan, H. Lehermeier, and M. Mang, J. Polym. Environ., 8, 1 (2008).

    Article  Google Scholar 

  5. J. S. Dugan, Int. Nonwovens J., 10, 29 (2001).

    CAS  Google Scholar 

  6. D. W. Farrington, J. Lunt, S. Davies, and R. S. Blackburn in “Biodegradable and Sustainable Fibres” (R. R. Blackburn, Ed.), pp.89–440, Woodhead Publishing, Cambrige England, 2005.

  7. J. Lunt and A. Shafer, J. Ind. Text., 29, 191 (2005).

    Article  Google Scholar 

  8. C. W. Lou, C. H. Yao, Y. S. Chen, T. C. Hsieh, J. H. Lin, and W. H. Hsing, Text. Res. J., 78, 958 (2008).

    Article  CAS  Google Scholar 

  9. T. Rijavec and Ž. Zupin in “Recent Trends for Enhancing the Diversity and Quality of Soybean Products” (D. Krezhova Ed.), pp.01–522, InTech, Rijeka, 2011.

  10. S. Cimilli, B. Nergis, C. Candan, and M. Ozdemir, Text. Res. J., 80, 948 (2010).

    Article  CAS  Google Scholar 

  11. M. M. Brooks in “Biodegradable and Sustainable Fibres” (R. S. Blackburn Ed.), pp.98–440, Woodhead Publishing Limited in Association with the Textile Institute Abington Hall, Abington, Cambridge, 2005.

  12. L. Yi-you, Fibres Text. East. Eur., 12, 8 (2004).

    Google Scholar 

  13. E. S. Abdel-Halim and S. S. Al-Deyab, Carbohydr. Polym., 86, 988 (2011).

    Article  CAS  Google Scholar 

  14. A. S. Aly, A. B. Moustafa, and A. Hebeish, J. Cleaner Prod., 12, 697 (2004).

    Article  Google Scholar 

  15. P. Preša and P. Forte Tavcer, Text. Res. J., 79, 76 (2009).

    Article  Google Scholar 

  16. P. Križman, F. Kovac, and P. Forte Tavcer, Color. Technol., 121, 304 (2005).

    Article  Google Scholar 

  17. J. Y. Cai, D. J. Evans, and S. M. Smith, AATCC Rev., 1, 31 (2001).

    CAS  Google Scholar 

  18. K. R. Jegannathan and P. H. Nielsen, J. Clean. Prod., 42, 234 (2013).

    Article  Google Scholar 

  19. N. Špicka and P. Forte Tavcer, Mater. Technol., 47, 409 (2013).

    Google Scholar 

  20. N. Špicka and P. Forte Tavcer, Text. Res. J., 85, 1497 (2015).

    Article  Google Scholar 

  21. K. E. Perepelkin, Fibre Chem., 34, 85 (2002).

    Article  CAS  Google Scholar 

  22. I. N. Phatthalung, P. Sae-be, J. Suesat, P. Suwanruji, and N. Soonsinpai, Int. J. Biosci. Biochem. Bioinform., 2, 179 (2012).

    Google Scholar 

  23. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy” (E. Prairie Ed.), Physical Electronics Inc., Minnesota, 1995.

  24. D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. De Jong, P. J. Lewi, and J. Smeyers-Verbeke, “Handbook of Chemometrics and Qualimetrics: Part A”, pp.20–535, Elsevier Science B.V., Amsterdam, 1997.

    Google Scholar 

  25. C. Chung, M. Lee, and E. K. Choe, Carbohydr. Polym., 58, 417 (2004).

    Article  CAS  Google Scholar 

  26. Y. Sun, L. Lin, H. Deng, J. Li, B. He, R. Sun, and P. Ouyang, BioResources, 3, 297 (2008).

    CAS  Google Scholar 

  27. R. Mitchell, C. M. Carr, M. Parfitt, J. C. Vickerman, and C. Jones, Cellulose, 12, 629 (2005).

    Article  CAS  Google Scholar 

  28. T. Topalovic, V. A. Nierstransz, L. Bautista, D. Jocic, A. Navarro, and M. M. C. G. Waroeskerken, Cellulose, 14, 385 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Špička.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Špička, N., Zupin, Ž., Kovač, J. et al. Enzymatic scouring and low-temperature bleaching of fabrics constructed from cotton, regenerated bamboo, poly(lactic acid), and soy protein fibers. Fibers Polym 16, 1723–1733 (2015). https://doi.org/10.1007/s12221-015-5140-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5140-1

Keywords

Navigation