Skip to main content
Log in

Heterogeneous modification of softwoods cellulose nanofibers with oleic acid: Effect of reaction time and oleic acid concentration

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Heterogeneous esterification of softwood cellulose nanofibers (CNF) was performed by oleic acid. The effects of reaction time and oleic acid content on the extent of esterification and fiber properties were evaluated. The success of the modification reaction was confirmed by Fourier transform infrared (FTIR) spectroscopy. It was observed that the amount of oleic acid had a significant effect on the degree of substitution (DS value). The X-ray diffraction analyses showed the broadening of the diffraction peaks with increasing of the DS values of cellulose esters. Surface modification changed thermal stability of CNF by decreasing degradation temperature from 290.8 °C for unmodified cellulose to 195.4 °C for highly esterified sample. These properties were strongly affected by the DS values in the investigated range. The color properties of modified CNFs were weakened by increasing reaction time and oleic acid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Azizi Samir, F. Alloin, W. Gorecki, J. Y. Sanchez, and A. Dufresne, J. Phy. Chem. B, 108, 10845 (2004).

    Article  Google Scholar 

  2. X. Cao, H. Dong, and C. M. Li, Biomacromolecules, 87, 899 (2007).

    Article  Google Scholar 

  3. M. Jonoobi, J. Harun, A. P. Mathew, and K. Oksman, Compos. Sci. Technol., 70, 1742 (2010).

    Article  CAS  Google Scholar 

  4. M. Kowalczyk, E. Piorkowska, P. Kulpinski, and M. Pracella, Compos. Pt. A-Appl. Sci. Manuf., 42, 1509 (2011).

    Article  Google Scholar 

  5. S. Spoljaric, A. Genovese, and R. A. Shanks, Compos. Pt. A-Appl. Sci. Manuf., 40, 791 (2009).

    Article  Google Scholar 

  6. H. P. S. Abdul Khalil, A. H. Bhat, and A. F. Ireana Yusra, Carbohydr. Polym., 87, 963 (2012).

    Article  CAS  Google Scholar 

  7. S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, and J. R. Capadona, J. Mater. Sci., 45, 1 (2010).

    Article  CAS  Google Scholar 

  8. F. P. La Mantia and M. Morreale, Compos. Pt. A-Appl. Sci. Manuf., 42, 579 (2011).

    Article  Google Scholar 

  9. A. G. Cunha and A. Gandini, Cellulose, 17, 875 (2010).

    Article  CAS  Google Scholar 

  10. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Compos. Pt. B-Eng., 43, 2883 (2012).

    Article  CAS  Google Scholar 

  11. M. N. Belgacem and A. Gandini in “Monomers, Polymers and Composites from Renewable Resources”, 1st ed. (M. N. Belgacem and A. Gandini Eds.), pp.385–400, Elsevier, London, 2008.

  12. P. Uschanov, L. Johansson, S. Maunu, and J. Laine, Cellulose, 18, 393 (2011).

    Article  CAS  Google Scholar 

  13. H. Matsumura, J. Sugiyama, and W. G. Glasser, J. Appl. Polym. Sci., 78, 2242 (2000).

    Article  CAS  Google Scholar 

  14. C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyrand, and E. Fleury, Polymer, 43, 2645 (2002).

    Article  CAS  Google Scholar 

  15. C. Gousse, H. Chanzy, M. L. Cerrada, and E. Fleury, Polymer, 45, 1569 (2004).

    Article  CAS  Google Scholar 

  16. W. Mormann and T. Wagner, Carbohydr. Polym., 43, 257 (2000).

    Article  CAS  Google Scholar 

  17. W. Hu, S. Chen, Q. Xu, and H. Wang, Carbohydr. Polym., 83, 1575 (2011).

    Article  CAS  Google Scholar 

  18. L. A. Ramos, D. L. Morgado, O. A. El Seoud, V. C. da Silva, and E. Frollini, Cellulose, 18, 385 (2011).

    Article  CAS  Google Scholar 

  19. Y. I. Shimizu and J. Hayashi, Cell Chem. Technol., 23, 661 (1989).

    CAS  Google Scholar 

  20. C. S. R. Freire, A. J. D. Silvestre, C. Pascoal Neto, M. N. Belgacem, and A. Gandini, J. Appl. Polym. Sci., 100, 1093 (2006).

    Article  CAS  Google Scholar 

  21. C. S. R. Freire, A. J. D. Silvestre, C. Pascoal Neto, A. Gandini, P. Fardim, and B. Holmbom, J. Colloid Interface Sci., 301, 205 (2006).

    Article  CAS  Google Scholar 

  22. C. S. R. Freire, A. J. D. Silvestre, C. Pascoal Neto, A. Gandini, L. Martin, and I. Mondragon, Compos. Sci. Technol., 68, 3358 (2008).

    Article  CAS  Google Scholar 

  23. P. Jandura, B. V. Kokta, and B. Riedl, J. Appl. Polym. Sci., 78, 1354 (2000).

    Article  CAS  Google Scholar 

  24. P. Jandura, B. Riedl, and B. V. Kokta, Polym. Degrad. Stabil., 70, 387 (2000).

    Article  CAS  Google Scholar 

  25. D. Pasquini, M. N. Belgacem, A. Gandini, and A. da Silva Curvelo, J. Colloid Interface Sci., 295, 79 (2006).

    Article  CAS  Google Scholar 

  26. D. Pasquini, E. M. Teixeira, A. S. Curvelo, M. N. Belgacem, and A. Dufresne, Compos. Sci. Technol., 68, 193 (2008).

    Article  CAS  Google Scholar 

  27. C. Vaca-Garcia and M. E. Borredon, Bioresour. Technol., 70, 135 (1999).

    Article  CAS  Google Scholar 

  28. W. Gindl and J. Keckes, Polymer, 46, 10221 (2005).

    Article  CAS  Google Scholar 

  29. M. Troedec, D. Sedan, C. Peyratout, P. Bonnet, and A. Smith, Compos. Pt. A-Appl. Sci. Manuf., 39, 514 (2008).

    Article  Google Scholar 

  30. H. R. Bolin and C. C. Huxsoll, J. Food Sci., 56, 416 (1991).

    Article  Google Scholar 

  31. A. Roy, S. Chakraborty, S. P. Kundu, R. K. Basak, S. B. Majumder, and B. Adhikari, Bioresour. Technol., 107, 222 (2012).

    Article  CAS  Google Scholar 

  32. W. Neng, D. Enyong, and C. Rongshi, Front. Chem. Eng. China, 1, 228 (2007).

    Article  Google Scholar 

  33. D. N. S. Hon, “Chemical Modification of Lignocellulosic Materials”, 1st ed., pp.120–128, Marcell Dekker, New York, 1996.

    Google Scholar 

  34. L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  35. H. Almasi, B. Ghanbarzadeh, and J. Dehghannia, Irn. J. Polym. Sci. Technol., 26, 485 (2014). (In Persian)

    CAS  Google Scholar 

  36. H. Almasi, B. Ghanbarzadeh, J. Dehghannia, A. A. Entezami, and A. Khosrowshahi Asl, Irn. Food Sci. Technol. Res. J., 10, 332 (2015). (In Persian)

    Google Scholar 

  37. H. Almasi, B. Ghanbarzadeh, J. Dehghannia, A. A. Entezami, and A. Khosrowshahi Asl, Food Addit. Contam: Part AChem., 31, 1586 (2014).

    Article  CAS  Google Scholar 

  38. C. Yan, Z. Jun, H. Jiasong, L. Huiquan, and Z. Yi, Chin. J. Chem. Eng., 18, 515 (2010).

    Article  Google Scholar 

  39. W. Y. Li, A. X. Jin, C. F. Liu, R. C. Sun, A. P. Zhang, and J. F. Kennedy, Carbohydr. Polym., 78, 389 (2009).

    Article  CAS  Google Scholar 

  40. B. Ghanbarzadeh and H. Almasi, Int. J. Biol. Macromol., 48, 44 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Almasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almasi, H., Ghanbarzadeh, B., Dehghannia, J. et al. Heterogeneous modification of softwoods cellulose nanofibers with oleic acid: Effect of reaction time and oleic acid concentration. Fibers Polym 16, 1715–1722 (2015). https://doi.org/10.1007/s12221-015-4294-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-4294-1

Keywords

Navigation