Skip to main content
Log in

A simultaneous measurement method to characterize touch properties of textile materials

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Touch feels of textile materials are major factors related to the clothing comfort. We could perceive touch feels through contacts between skin and fabrics. Latest researches concluded there were four types of touch information including thermal, proprioceptive, cutaneous, and irritant and pains. There is a clear gap between current measurement methods on fabric touch feels and latest theoretical research outputs. This report introduced a new characterization method of textile touch feels. It simultaneously measured four categories of physical properties of textiles. Fabric Touch Tester (FTT), the reported instrument, included four modules as thermal, compression, bending and surface. Measuring time of one complete test on this instrument only took about 5 minutes. Output of FTT contained comprehensive descriptions on the physical properties of samples in both directions (warp/wale and weft/course). Experiment results showed that FTT could measure and distinguish these fabrics with good repeatability and reproducibility. Correlation study between FTT results and subjective evaluation scores showed there were significant correlations between them. Initial findings were concluded on the effect of thermal properties on other tactile perceptions as well as the interactions between different physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. T. Peirce, J. Text. Inst., 21, 9 (1930).

    Article  Google Scholar 

  2. A. N. Patterson, Rayon Text. Mon., 28, 292 (1947).

    Google Scholar 

  3. R. M. Hoffman and L. F. Beste, Text. Res. J., 21, 66 (1951).

    Article  Google Scholar 

  4. K. Slater, J. Text. Inst., 77, 3 (1986).

    Google Scholar 

  5. Y. Li, Text. Asia, 29, 7 (1986).

    Google Scholar 

  6. X. Liao, J. Y. Hu, Y. Li, Q. H. Li, and X. X. Wu, J. Fiber Bioeng. Informat., 4, 2 (2011).

    Article  Google Scholar 

  7. M. Pier Giorgio, Int. J. Cloth. Sci. Tech., 7, 2 (1995).

    Google Scholar 

  8. S. Kawabata, “The Standardization and Analysis of Hand Evaluation”, 2nd ed., pp.27–90, Textile Machinery Society of Japan, Osaka, Japan, 1980.

    Google Scholar 

  9. S. Kawabata and N. Niwa, Int. J. Cloth. Sci. Tech., 3, 1 (1991).

    Article  Google Scholar 

  10. S. Kawabata, J. Text. Mach. Soc. Jpn., 37, 8 (1984).

    Google Scholar 

  11. N. Pan, K. C. Yen, S. J. Zhao, and S. R. Yang, Text. Res. J., 58, 8 (1988).

    Google Scholar 

  12. N. Pan, Int. J. Design Nature, 1, 1 (2007).

    Google Scholar 

  13. Z. Q. Du, R. Q. Gao, T. X. Zhou, and L. G. He, Fiber. Polym., 14, 1 (2013).

    Article  Google Scholar 

  14. N. Pan, S. H. Zeronian, and H. S. Ryu, Text. Res. J., 63, 1 (1993).

    Article  Google Scholar 

  15. X. Liao, J. Y. Hu, Y. Li, X. X. Wu, and Q. H. Li, Proc. TBIS Japan, p.906, (2012).

    Google Scholar 

  16. A. Chaudhuri, “Fundamentals of Sensory Perception”, pp.10–14, Oxford University Press, Don Mills, Ontario, 2011.

    Google Scholar 

  17. I. B. Levitan and L. K. Kaczmarek, “The Neuron: Cell and Molecular Biology”, pp.23–29, Oxford University Press, New York, 2002.

    Google Scholar 

  18. S. S. Hsiao in “The Handbook of Touch: Neuroscience, Behavioral, and Health Perspectives” (M. J. Hertenstein and S. J. Weiss Eds.), pp.143–161, Springer Publishing Co., New York, 2011.

  19. J. Smit, T. Hanekom, and J. Hanekom, Biol. Cybern., 100, 1 (2009).

    Article  Google Scholar 

  20. Y. Li and A. S. W. Wong, “Clothing Biosensory Engineering”, pp. 9–12, Woodhead Publishing, Cambridge, 2006.

    Book  Google Scholar 

  21. G. H. Yang and D. S. Kwon, Int. Conf. Control. Autom., pp.244–249 (2008).

    Google Scholar 

  22. H. N. Ho, J. Watanabe, H. Ando, and M. Kashino, J. Neuros., 31, 1 (2011).

    Article  Google Scholar 

  23. J. Hyvarinen and A. Poranen, J. Physiol., 283, 1 (1978).

    Google Scholar 

  24. Y. Iwamura and M. Tanaka, Brain Res., 150, 3 (1978).

    Article  Google Scholar 

  25. H. M. Behery, Text. Res. J., 56, 4 (1986).

    Article  Google Scholar 

  26. Y. E. El Mogahzy, F. S. Kilinc, and M. Hassan in “Effect of Mechanical and Physical Properties on Fabric Hand” (H. M. Beherv Ed.), pp.45–65, Woodhead Publishing, Cambridge, 2005.

  27. J. O. Kim and B. L. Slaten, Text. Res. J., 69, 1 (1999).

    Article  Google Scholar 

  28. J. Hu, X. Ding, R. Wang, and C. Cai, Fiber. Polym., 10, 3 (2009).

    Article  Google Scholar 

  29. J. Y. Hu, L. Hes, Y. Li, K. W. Yeung, and B. G. Yao, Polym. Test., 25, 8 (2006).

    Google Scholar 

  30. R. A. Freitas, “Nanomedicine”, pp.107–108, Landes Bioscience, Georgetown, Texas, 1999.

    Google Scholar 

  31. Y. Li, J. Y. Hu, X. Liao, Q. H. Li, and X. X. Wu, China Patent, 2012102756480 (2012).

    Google Scholar 

  32. Y. Li, J. Y. Hu, X. Liao, Q. H. Li, and X. X. Wu, China Patent, 201210278839.2 (2012).

    Google Scholar 

  33. A. Vaziri, R. A. Jenks, A. R. Boloori, and G. B. Stanley, Exp. Mech., 47, 3 (2007).

    Article  Google Scholar 

  34. Y. Li, J. Y. Hu, X. Liao, Q. H. Li, and X. X. Wu, China Patent, 2012102754856 (2012).

    Google Scholar 

  35. D. Nuffel, K. S. Vepa, I. Baere, J. Degrieck, J. Rouck, and W. Paepegem, Exp. Mech., 53, 2 (2013).

    Google Scholar 

  36. J. Hu, “Structure and Mechanics of Woven Fabrics”, pp.82–89, Woodhead Publishing, Cambridge, 2004.

    Book  Google Scholar 

  37. K. O. Johnson, T. Yoshioka, and F. Vega-Bermudez, J. Clin. Neurophysiol., 17, 6 (2000).

    Article  Google Scholar 

  38. M. A. Harvey, H. P. Saal, J. F. Dammann III, and S. J. Bensmaia, Plos. Biol., 11, 5 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, X., Li, Y., Hu, J. et al. A simultaneous measurement method to characterize touch properties of textile materials. Fibers Polym 15, 1548–1559 (2014). https://doi.org/10.1007/s12221-014-1548-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1548-2

Keywords

Navigation