Skip to main content
Log in

The Minimal Volume of Simplices Containing a Convex Body

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(K \subset {\mathbb {R}}^n\) be a convex body with barycenter at the origin. We show there is a simplex \(S \subset K\) having also barycenter at the origin such that \((\frac{\text {vol}(S)}{\text {vol}(K)})^{1/n} \ge \frac{c}{\sqrt{n}},\) where \(c>0\) is an absolute constant. This is achieved using stochastic geometric techniques. Precisely, if K is in isotropic position, we present a method to find centered simplices verifying the above bound that works with extremely high probability. By duality, given a convex body \(K \subset {\mathbb {R}}^n\) we show there is a simplex S enclosing Kwith the same barycenter such that

$$\begin{aligned} \left( \frac{\text {vol}(S)}{\text {vol}(K)}\right) ^{1/n} \le d \sqrt{n}, \end{aligned}$$

for some absolute constant \(d>0\). Up to the constant, the estimate cannot be lessened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis, Part I, vol. 202. American Mathematical Society, Providence (2015)

    Book  MATH  Google Scholar 

  2. Alonso-Gutiérrez, D.: On the isotropy constant of random convex sets. Proc. Am. Math. Soc. 136(9), 3293–3300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball, K.: Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 2(2), 351–359 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barthe, F.: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134(2), 335–361 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H.: Geometry of Isotropic Convex Bodies, vol. 196. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  6. Blaschke, W.: Über affine geometrie iii: Eine minimumeigenschaft der ellipse. Berichte über die Verhandlungen der königl. sächs. Gesellschaft der Wissenschaften zu Leipzig 69, 3–12 (1917)

  7. Bourgain, J.: On the distribution of polynomials on high dimensional convex sets. In: Milman, L.A. (ed.) Geometric Aspects of Functional Analysis, pp. 127–137. Springer, New York (1991)

    Chapter  Google Scholar 

  8. Brazitikos, S.: Brascamp-Lieb inequality and quantitative versions of Helly’s theorem. Mathematika 63(1), 272–291 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chakerian, G.: Minimum area of circumscribed polygons. Elem. Math. 28, 108–111 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Dvoretzky, A., Rogers, C.A.: Absolute and unconditional convergence in normed linear spaces. Proc. Natl. Acad. Sci. 36(3), 192–197 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gardner, R.J.: Geometric Tomography, vol. 1. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  12. Giannopoulos, A., Hartzoulaki, M.: On the volume ratio of two convex bodies. Bull. Lond. Math. Soc. 34(06), 703–707 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giannopoulos, A., Perissinaki, I., Tsolomitis, A.: John’s theorem for an arbitrary pair of convex bodies. Geom. Dedicata 84(1–3), 63–79 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross, W.: Über affine geometrie xiii: Eine minimumeigenschaft der ellipse und des ellipsoids. Ber. Verh. Sächs. Akad. Wiss. Leipz. Math.-Nat. wiss. Kl 70, 38–54 (1918)

  15. Gruber, P.: Convex and Discrete Geometry, vol. 336. Springer, Berlin (2007)

    MATH  Google Scholar 

  16. Hudelson, M., Klee, V., Larman, D.: Largest j-simplices in d-cubes: some relatives of the Hadamard maximum determinant problem. Linear Algebra Appl. 241, 519–598 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kanazawa, A.: On the minimal volume of simplices enclosing a convex body. Arch. Math. 102(5), 489–492 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klartag, B., Kozma, G.: On the hyperplane conjecture for random convex sets. Israel J. Math. 170(1), 253–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klartag, B.: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. GAFA 16(6), 1274–1290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kannan, R., Lovász, L., Simonovits, M.: Isoperimetric problems for convex bodies and a localization lemma. Discret. Comput. Geom. 13(3–4), 541–559 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuperberg, W.: On minimum area quadrilaterals and triangles circumscribed about convex plane regions. Elem. Math. 38, 57–61 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Lassak, M.: On the Banach-Mazur distance between convex bodies. J. Geom. 41, 11–12 (1992)

    Google Scholar 

  23. Lassak, M.: Approximation of convex bodies by centrally symmetric bodies. Geom. Dedicata 72(1), 63–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Macbeath, A.M.: An extremal property of the hypersphere. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 47, pp. 245–247. Cambridge University Press, Cambridge (1951)

  25. Matoušek, Jiří.: Lectures on Discrete Geometry, vol. 108. Springer, New York (2002)

  26. McKinney, J.A.M.E.S.R.: On maximal simplices inscribed in a central convex set. Mathematika 21(01), 38–44 (1974)

  27. Milman, V.D, Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Geometric Aspects of Functional Analysis, pp. 64–104. Springer, New York (1989)

  28. Naszódi, M.: Proof of a conjecture of Bárány. Katchalski and Pach. Discret. Comput. Geom. 55(1), 243–248 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pach, J., Agarwal, P.K.: Combinatorial Geometry, vol. 37. Wiley, New York (2011)

    MATH  Google Scholar 

  30. Pelczynski, A.: Structural theory of Banach spaces and its interplay with analysis and probability. In: Proceedings of the ICM, pp. 237–269 (1983)

  31. Pivovarov, P.: On determinants and the volume of random polytopes in isotropic convex bodies. Geom. Dedicata 149(1), 45–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Paouris, G., Pivovarov, P.: Random ball-polyhedra and inequalities for intrinsic volumes. Monatshefte für Mathematik 182(3), 709–729 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pelczynski, A., Szarek, S.: On parallelepipeds of minimal volume containing a convex symmetric body in \(\mathbb{R}^{n}\). In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 109, pp. 125–148. Cambridge University Press, Cambridge (1991)

  34. Sas, E.: Über eine extremumeigenschaft der ellipsen. Compos. Math. 6, 468–470 (1939)

    MathSciNet  MATH  Google Scholar 

  35. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for the clever insight regarding Problem 1.1 which gave origin to the previous section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Galicer.

Additional information

This work was partially supported by Projects CONICET PIP 11220130100329, CONICET PIP 11220090100624, ANPCyT PICT 2015-2299, ANPCyT PICT 2015-3085, UBACyT 20020130100474BA, UBACyT 20020130300057BA. The second author was supported by a CONICET doctoral fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galicer, D., Merzbacher, M. & Pinasco, D. The Minimal Volume of Simplices Containing a Convex Body. J Geom Anal 29, 717–732 (2019). https://doi.org/10.1007/s12220-018-0016-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-0016-4

Keywords

Mathematics Subject Classification

Navigation