Skip to main content
Log in

On determinants and the volume of random polytopes in isotropic convex bodies

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this paper we consider random polytopes generated by sampling points in multiple convex bodies. We prove related estimates for random determinants and give applications to several geometric inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott J., Mulders T.: How tight is Hadamard’s bound? Exp. Math. 10(3), 331–336 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Borell C.: Convex set functions in d-space. Period. Math. Hungar. 6(2), 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Meyer, M., Milman, V., Pajor, A.: On a geometric inequality. In: Geometric Aspects of Functional Analysis (1986/87), Volume 1317 of Lecture Notes in Mathematics, pp. 271–282. Springer, Berlin (1988)

  4. Dafnis, N., Giannopoulos, A., Guedon, O.: On the isotropic constant of random polytopes. Adv. Geom., (to appear) (2009)

  5. Dafnis N., Giannopoulos A., Tsolomitis A.: Asymptotic shape of a random polytope in a convex body. J. Funct. Anal. 257, 2820–2839 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dixon J.D.: How good is Hadamard’s inequality for determinants? Can. Math. Bull. 27(3), 260–264 (1984)

    MATH  Google Scholar 

  7. Giannopoulos A., Hartzoulaki M., Tsolomitis A.: Random points in isotropic unconditional convex bodies. J. Lond. Math. Soc. (2) 72(3), 779–798 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gluskin, E., Milman, V. : Geometric probability and random cotype 2. In: Geometric Aspects of Functional Analysis, Volume 1850 of Lecture Notes in Mathematics, pp. 123–138. Springer, Berlin (2004)

  9. Guédon O.: Kahane-Khinchine type inequalities for negative exponent. Mathematika 46(1), 165–173 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Johnson C.R., Newman M.: How bad is the Hadamard determinantal bound? J. Res. Nat. Bur. Stand. Sect. B 78B, 167–169 (1974)

    MathSciNet  Google Scholar 

  11. Klartag B.: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16(6), 1274–1290 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Klartag B.: A central limit theorem for convex sets. Invent. Math. 168(1), 91–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klartag B., Vershynin R.: Small ball probability and Dvoretzky’s theorem. Isr. J. Math. 157, 193–207 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Latała R., Oleszkiewicz K.: Small ball probability estimates in terms of widths. Studia Math. 169(3), 305–314 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mathai A.M.: Random p-content of a p-parallelotope in Euclidean n-space. Adv. Appl. Probab. 31(2), 343–354 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Meckes M.W.: Volumes of symmetric random polytopes. Arch. Math. (Basel) 82(1), 85–96 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Miles R.E.: Isotropic random simplices. Adv. Appl. Probab. 3, 353–382 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In: Geometric aspects of functional analysis (1987–1988), Volume 1376 of Lecture Notes in Mathematics, pp. 64–104. Springer, Berlin (1989)

  19. Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces, Volume 1200 of Lecture Notes in Mathematics. Springer, Berlin. With an appendix by M. Gromov (1986)

  20. Paouris G.: Concentration of mass on convex bodies. Geom. Funct. Anal. 16(5), 1021–1049 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Paouris, G.: Small ball probability estimates for log-concave measures. Preprint (2009)

  22. Ruben H.: The volume of an isotropic random parallelotope. J. Appl. Probab. 16(1), 84–94 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pivovarov.

Additional information

This article is part of the author’s Ph.D thesis, currently being written under the supervision of N. Tomczak-Jaegermann at the University of Alberta. The author holds an Izaak Walton Killam Memorial Scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivovarov, P. On determinants and the volume of random polytopes in isotropic convex bodies. Geom Dedicata 149, 45–58 (2010). https://doi.org/10.1007/s10711-010-9462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-010-9462-2

Keywords

Mathematics Subject Classification (2000)

Navigation