Skip to main content
Log in

Polytopes of Maximal Volume Product

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

For a convex body \(K \subset {\mathbb {R}}^n,\) let \(K^z = \{y\in {\mathbb R}^n : \langle y-z, x-z\rangle \le 1,\ \text{ for } \text{ all }\ x\in K\}\) be the polar body of K with respect to the center of polarity \(z \in {\mathbb {R}}^n.\) The goal of this paper is to study the maximum of the volume product \(\mathcal {P}(K)=\min _{z\in \mathrm{int}(K)}|K||K^z|,\) among convex polytopes \(K\subset {\mathbb R}^n\) with a number of vertices bounded by some fixed integer \(m \ge n+1.\) In particular, we prove a combinatorial formula characterizing a polytope of maximal volume product and use this formula to show that the supremum is reached at a simplicial polytope with exactly m vertices. We also use this formula to provide a proof of a result of Meyer and Reisner showing that, in the plane, the regular polygon has maximal volume product among all polygons with at most m vertices. Finally, we treat the case of polytopes with \(n+2\) vertices in \({\mathbb {R}}^n.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis. Part I. Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  2. Barthe, F., Fradelizi, M.: The volume product of convex bodies with many hyperplane symmetries. Am. J. Math. 135(2), 311–347 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böröczky, K.J., Makai Jr., E., Meyer, M., Reisner, S.: On the volume product of planar polar convex bodies–lower estimates with stability. Stud. Sci. Math. Hung. 50(2), 159–198 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Milman, V.D.: New volume ratio properties for convex symmetric bodies in \({\mathbb{R}}^n\). Invent. Math. 88(2), 319–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campi, S., Gronchi, P.: On volume product inequalities for convex sets. Proc. Am. Math. Soc. 134(8), 2393–2402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fradelizi, M., Meyer, M., Zvavitch, A.: An application of shadow systems to Mahler’s conjecture. Discrete Comput. Geom. 48(3), 721–734 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Giannopoulos, A., Paouris, G., Vritsiou, B.-H.: The isotropic position and the reverse Santaló inequality. Isr. J. Math. 203(1), 1–22 (2014)

    Article  MATH  Google Scholar 

  8. Gluskin, E.D., Litvak, A.E.: On the asymmetry constant of a body with few vertices. Geom. Dedic. 90, 45–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gordon, Y., Meyer, M.: On the minima of the functional Mahler product. Houst. J. Math. 40(2), 385–393 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Gordon, Y., Meyer, M., Reisner, S.: Zonoids with minimal volume product—a new proof. Proc. Am. Math. Soc. 104(1), 273–276 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Grünbaum, B.: Convex Polytopes. Graduate Texts in Mathematics, 2nd edn, vol. 221. Springer, New York (2003)

  12. Iriyeh, H., Shibata, M.: Symmetric Mahler’s conjecture for the volume product in the three dimensional case (2017). arXiv:1706.01749

  13. Kim, J.: Minimal volume product near Hanner polytopes. J. Funct. Anal. 266(4), 2360–2402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, J., Reisner, S.: Local minimality of the volume-product at the simplex. Mathematika 57(1), 121–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuperberg, G.: From the Mahler conjecture to Gauss linking integrals. Geom. Funct. Anal. 18(3), 870–892 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mahler, K.: Ein Minimalproblem für konvexe Polygone. Mathematica (Zutphen) B7, 118–127 (1939)

    MATH  Google Scholar 

  17. Mahler, K.: Ein Überträgungsprinzip für konvexe Körper. Časopis Pěst. Mat. Fys. 68, 93–102 (1939)

    MATH  MathSciNet  Google Scholar 

  18. Meyer, M.: Une caractérisation volumique de certains espaces normés de dimension finie. Isr. J. Math. 55, 317–326 (1986)

    Article  MATH  Google Scholar 

  19. Meyer, M.: Convex bodies with minimal volume product in \({\mathbb{R}}^2\). Mon. Math. 112(4), 297–301 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Meyer, M., Pajor, A.: On Santaló’s inequality. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis (1987–88). Lecture Notes in Mathematics, vol. 1376, pp. 261–263. Springer, Berlin (1989)

    Chapter  Google Scholar 

  21. Meyer, M., Reisner, S.: Characterizations of ellipsoids by section-centroid location. Geom. Dedic. 31(3), 345–355 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meyer, M., Reisner, S.: Inequalities involving integrals of polar-conjugate concave functions. Mon. Math. 125(3), 219–227 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meyer, M., Reisner, S.: Shadow systems and volumes of polar convex bodies. Mathematika 53(1), 129–148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meyer, M., Reisner, S.: On the volume product of polygons. Abh. Math. Semin. Univ. Hambg. 81(1), 93–100 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nazarov, F.: The Hörmander proof of the Bourgain–Milman theorem. In: Klartag, B., Mendelson, S., Milman, V.D. (eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 2050, pp. 335–343. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Nazarov, F., Petrov, F., Ryabogin, D., Zvavitch, A.: A remark on the Mahler conjecture: local minimality of the unit cube. Duke Math. J. 154(3), 419–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Petty, C.M.: Affine isoperimetric problems. In: Goodman, J.E., et al. (eds.) Discrete Geometry and Convexity. Annals of the New York Academy of Sciences, vol. 440, pp. 113–127. New York Academy of Sciences, New York (1985)

  28. Reisner, S.: Zonoids with minimal volume-product. Math. Z. 192(3), 339–346 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reisner, S.: Minimal volume product in Banach spaces with a 1-unconditional basis. J. Lond. Math. Soc. 36(1), 126–136 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Reisner, S.: Certain Banach spaces associated with graphs and CL-spaces with 1-unconditional bases. J. Lond. Math. Soc. 43(1), 137–148 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reisner, S., Schütt, C., Werner, E.M.: Mahler’s conjecture and curvature. Int. Math. Res. Not. 2012(1), 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rogers, C.A., Shephard, G.C.: Some extremal problems for convex bodies. Mathematika 5, 93–102 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ryabogin, D., Zvavitch, A.: Analytic methods in convex geometry. In: Analytical and Probabilistic Methods in the Geometry of Convex Bodies. IMPAN Lecture Notes, vol. 2, pp. 87–183. IMPAN, Warsaw (2014)

  34. Saint Raymond, J.: Sur le volume des corps convexes symétriques. Séminaire d’Initiation à l’Analyse, 1980–81. Université Paris VI, Paris (1981)

  35. Santaló, L.A.: Un invariante afin para los cuerpos convexos del espacio de \(n\) dimensiones. Port. Math. 8, 155–161 (1949)

    Google Scholar 

  36. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications, 2nd edn, vol. 151. Cambridge University Press, Cambridge (2014)

  37. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Zvavitch.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Zvavitch is supported in part by the U.S. National Science Foundation Grant DMS-1101636; the Bézout Labex of Université Paris-Est and la Comue Université Paris-Est. M. Alexander is supported in part by the Chateaubriand Fellowship of the Office for Science and Technology of the Embassy of France in the United States and The Centre National de la Recherche Scientifique Funding Visiting Research at Université Paris-Est Marne-la-Vallée. M. Fradelizi is supported in part by the Agence Nationale de la Recherche, Project GeMeCoD (ANR 2011 BS01 007 01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, M., Fradelizi, M. & Zvavitch, A. Polytopes of Maximal Volume Product. Discrete Comput Geom 62, 583–600 (2019). https://doi.org/10.1007/s00454-019-00072-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00072-3

Keywords

Mathematics Subject Classification

Navigation