Skip to main content
Log in

Toric Kähler–Einstein Metrics and Convex Compact Polytopes

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We show that any compact convex simple lattice polytope is the moment polytope of a Kähler–Einstein orbifold, unique up to orbifold covering and homothety. We extend the Wang–Zhu Theorem (Wang and Zhu in Adv Math 188:47–103, 2004) giving the existence of a Kähler–Ricci soliton on any toric monotone manifold on any compact convex simple labeled polytope satisfying the combinatoric condition corresponding to monotonicity. We obtain that any compact convex simple polytope admits a set of inward normals, unique up to dilatation, such that there exists a symplectic potential satisfying the Guillemin boundary condition (with respect to these normals) and the Kähler–Einstein equation on . We interpret our result in terms of existence of singular Kähler–Einstein metrics on toric manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our convention is that \(P\) is open and we denote \(\overline{P}=\{p\in \mathfrak {t}^*\,|\,L_k(p)\ge 0\}\). \(\overline{P}\) is compact.

  2. We denote \(P\) the interior of the polytope and \(\overline{P}\) its closure. In this text, polytopes are always assumed to be convex and simple with compact closure.

  3. The argument is stated for \(n=2\) but holds in general.

References

  1. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9, 641–651 (1998)

  2. Abreu, M.: Kähler metrics on toric orbifolds. J. Differ. Geom. 58, 151–187 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tønnesen-Friedman, C.: Hamiltonian \(2\)-forms in Kähler geometry. II. Global classification. J. Differ. Geom. 68, 277–345 (2004)

    MATH  Google Scholar 

  4. Aubin, T.: Equations de type Monge-Ampère sur les variétés kählériennes compactes. C. R. Acad. Sci. Paris 283, 119–121 (1976)

    MATH  MathSciNet  Google Scholar 

  5. Boyer, C.P., Galicki, K.: Sasakian Geometry, Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

    Google Scholar 

  6. Burns, D., Guillemin, V.: Potential functions and action of tori on Kähler manifold. Commun. Anal. Geom. 12(1), 281–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Calabi, E.: The space of Kähler metrics. In: Proceedings of the International Congress of Mathematicians, vol. 2, pp. 206–207. Amsterdam (1954)

  8. Calabi, E.: Extremal Kähler metrics. II. In: Chavel, I., Farkas, H.M. (eds.) Differential Geometry and Complex Analysis, pp. 95–114. Springer, Berlin (1985)

    Chapter  Google Scholar 

  9. Calderbank, D.M.J., David, L., Gauduchon, P.: The Guillemin formula and Kähler metrics on toric symplectic manifolds. J. Symp. Geom. 1, 767–784 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, X.-X., Donaldson, S.K., Sun, S.: Kähler–Einstein Metrics on Fano Manifolds, I: Approximation of Metrics with Cone Singularities. arXiv/math.DG:1211.4566

  11. Chen, X.-X., Donaldson, S.K., Sun, S.: Kähler–Einstein Metrics on Fano Manifolds, II: Limits with Cone Angle Less Than \(2\pi \). arXiv/math.DG:1212.4714

  12. Chen, X.-X., Donaldson, S.K., Sun, S.: Kähler–Einstein Metrics on Fano Manifolds, III: Limits as Cone Angle Approaches \(2\pi \) and Completion of the Main Proof. arXiv/math.DG:1302.0282

  13. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. Fr. 116, 315–339 (1988)

    MATH  MathSciNet  Google Scholar 

  14. Donaldson, S.K.: Kähler geometry on toric manifolds, and some other manifolds with large symmetry. In: Handbook of Geometric Analysis. No. 1, Advanced Lectures in Mathematics (ALM), vol. 7, pp. 29–75. Int. Press, Somerville, MA (2008)

  15. Donaldson, S.K.: Extremal metrics on toric surfaces: a continuity method. J. Differ. Geom. 79, 389–432 (2008)

    MATH  MathSciNet  Google Scholar 

  16. Donaldson, S.K.: Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19, 83–136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Donaldson, S.K.: Kähler metrics with cone singularities along a divisor. In: Pardalos, P.M., Rassias, T.M. (eds.) Essays in Mathematics and Its Applications, pp. 49–79. Springer, Heidelberg (2012)

  18. Duistermaat, J.J., Pelayo, A.: Reduced phase space and toric variety coordinatizations of Delzant spaces. Math. Proc. Camb. Philos. Soc. 146(3), 695–718 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Futaki, A.: An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73(3), 437–443 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Futaki, A., Ono, H., Wang, G.: Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds. J. Differ. Geom. 83, 585–636 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Gauduchon, P.: Extremal Kähler Metrics: An Elementary Introduction (in preparation)

  22. Guillemin, V.: Kähler structures on toric varieties. J. Differ. Geom. 40, 285–309 (1994)

    MATH  MathSciNet  Google Scholar 

  23. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford science publication, Oxford (2000)

    MATH  Google Scholar 

  24. Legendre, E.: Toric geometry of convex quadrilaterals. J. Symplectic Geom. 9, 343–385 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Legendre, E.: Existence and non uniqueness of constant scalar curvature toric Sasaki metrics. Compos. Math. 147, 1613–1634 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lejmi, M.: Extremal almost-Kahler metrics. Int. J. Math. 21(12), 1639–1662 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lerman, E.: Toric contact manifolds. J. Symplectic Geom. 1, 785–828 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lerman, E., Tolman, S.: Hamiltonian torus actions on symplectic orbifolds and toric varieties. Trans. Am. Math. Soc. 349, 4201–4230 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li, C.: Greatest lower bounds on Ricci curvature for toric Fano manifolds. Adv. Math. 226(6), 4921–4932 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Li, C.: On the limit behavior of metrics in continuity method to Kähler–Einstein problem in toric Fano case. Compos. Math. 148(6), 1985–2003 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mabuchi, T.: Einstein–Kahler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24, 705–737 (1987)

    MATH  MathSciNet  Google Scholar 

  32. Martelli, D., Sparks, J., Yau, S.-T.: The geometric dual of a—maximisation for toric Sasaki–Einstein manifolds. Commun. Math. Phys. 268, 39–65 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Palaiseau, S.: Premiere classe de chern et courbure de Ricci positive: preuve de la conjecture de Calabi. Astérisque 58, 100 (1978)

  34. Schwarz, G.W.: Smooth functions invariant under the action of a compact Lie group. Topology 14, 63–68 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shi, Y., Zhu, X.H.: Kähler–Ricci Solitons on Toric Fano Orbifolds, preprint. arXiv:math.DG/1102.2764

  36. Székelyhidi, G.: Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147, 319–331 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tian, G.: \(K\)-stability and Kähler–Einstein Metrics. arXiv:math.DG/1211.4669

  38. Tian, G.: Kähler–Einstein metrics on algebraic manifolds. In: Transcendental Methods in Algebraic Geometry (Cetraro 1994). Lecture Notes in Mathematics, vol. 1646, pp. 143–185 (1994)

  39. Tian, G., Zhu, X.H.: Uniqueness of Kähler–Ricci solitons. Acta Math. 184, 271–305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, X.-J., Zhu, X.H.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 47–103 (2004)

    Article  Google Scholar 

  41. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  42. Zhu, X.H.: Kähler–Ricci soliton typed equation on compact complex manifolds with \(c_1(M){\>}0\). J. Geom. Anal. 10, 759–774 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor Vestislav Apostolov for bringing her attention to this problem and for his numerous advice. This project ended during a stay at the MIT, the author thanks Professor Victor Guillemin for his interest in this problem. She also thanks Yanir Rubinstein for his explanations of some subtleties concerning singular Kähler metrics. Finally, she thanks the referees for pointing to her a mistake in a previous version of this work and giving her ideas to complete a proof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eveline Legendre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legendre, E. Toric Kähler–Einstein Metrics and Convex Compact Polytopes. J Geom Anal 26, 399–427 (2016). https://doi.org/10.1007/s12220-015-9556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9556-z

Keywords

Mathematics Subject Classification

Navigation