Skip to main content

Abstract

Given a compact, complex manifold M with a Kähler metric, we fix the deRham cohomology class Ω of the Kahler metric, and consider the function space ℊΩ of all Kahler metrics in M in that class. To each (g) ∈ GΩ we assign the non-negative real number \( \Phi (g) = \int\limits_{M} {R_{g}^{2}d{V_{g}}}\) (R g = scalar curvature, d V g = volume element).

Aiming to find a (g) ∈ ℊΩ that minimizes the function Φ, we study the geometric properties in M of any (g) ∈ ℊΩ that is a critical point of Φ, with the following results.

1) Any metric (g) that is a critical point of Φ is necessarily invariant under a maximal compact subgroup of the identity component ℌ0(M) of the complex Lie group of all holomorphic automorphisms of M.

2) Any critical metric (g) ∈ ℊΩ of Φ achieves a local minimum value of Φ in ℊΩ; the component of (g) in the critical set of Φ coincides with the orbit of Φ under the action of the group ℌ0(M), it is diffeomorphic to an open euclidean ball, and the critical set is always non-degenerate in the sense of ℌ0(M)-equivariant Morse theory.

3) If there exists a (g) ∈ ℊΩ with constant scalar curvature R, then it achieves an absolute minimum value of Φ; furthermore every critical metric in ℊΩ has constant R, and achieves the same value of Φ.

4) Whenever the existence of a critical Kahler metric (g) can be guaranteed (i.e., always, according to a conjecture 2), then Futaki’s obstruction determines a necessary and sufficient condition for the existence of a (g) ∈ ℊΩ with constant scalar curvature.

Research supported by NSF Grant No. MCS 81–15107 and by the Institute for Advanced Study, Princeton, NJ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bando, S.: An obstruction for Chern class forms to be harmonic. Manuscript received, 1983

    Google Scholar 

  2. Calabi, E.: Extremal Kahler Metrics. Seminars on Differential Geometry (S.T. Yau, ed.). Princeton Univ. Press & Univ. of Tokyo Press, Princeton, New York, 1982, pp. 259–290

    Google Scholar 

  3. Futaki, A.: An obstruction to the existence of Einstein-Kähler metrics. Inv. Math. 73, Fasc. 3 (1983), 437–443

    Article  MathSciNet  Google Scholar 

  4. Lichnérowicz, A.: Sur les transformations analytiques des variétés kähleriennes. C.R. Acad. Sci. Paris, 244 (1957), 3011–3014

    MathSciNet  MATH  Google Scholar 

  5. Matsushima, Y.: Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété Kählerienne. Nag. Math. J. 11 (1957), 145–150

    MathSciNet  MATH  Google Scholar 

  6. Levine, M.: A remark on extremal Kahler metrics, manuscript submitted.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Calabi, E. (1985). Extremal Kähler Metrics II. In: Chavel, I., Farkas, H.M. (eds) Differential Geometry and Complex Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69828-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69828-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69830-9

  • Online ISBN: 978-3-642-69828-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics