Skip to main content
Log in

Numerical Modelling for the Droplets Formation in Microfluidics - A Review

  • Review
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Microfluidic technology has advantages in producing high-quality droplets with monodispersity which is promising in chemical engineering, biological medicine and so on. An in-depth study on the underlying mechanism of droplet formation in microfluidics is of great significance, and to understand it, numerical simulation is highly beneficial. This article reviews the substantial numerical methods used to study the fluid dynamics in microfluidic droplet formation, mainly including the continuum methods and mesoscale methods. Moreover, the principles of various methods and their applications in droplets formation in microfluidics have been thoroughly discussed, establishing the guidelines to further promote the numerical research in microfluidic droplet formation. The potential directions of numerical modelling for droplet formation in microfluidics are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in this published article.

References

  • Abate, A.R., Thiele, J., Weitz, D.A.: One-step formation of multiple emulsions in microfluidics. Lab Chip 11(2), 253–258 (2011). https://doi.org/10.1039/C0LC00236D

    Article  Google Scholar 

  • Agresti, J.J., Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J.C., Marquez, M., Klibanov, A.M., Griffiths, A.D., Weitz, D.A.: Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. U.S.A. 107(9), 4004–4009 (2010)

    Article  Google Scholar 

  • Aihara, S., Takaki, T., Takada, N.: Multi-phase-field modeling using a conservative Allen-Cahn equation for multiphase flow. Comput. Fluids 178, 141–151 (2019). https://doi.org/10.1016/j.compfluid.2018.08.023

    Article  MathSciNet  MATH  Google Scholar 

  • Amiri, N., Honarmand, M., Dizani, M., Moosavi, A., Kazemzadeh Hannani, S.: Shear-thinning droplet formation inside a microfluidic T-junction under an electric field. Acta Mech. 232(7), 2535–2554 (2021). https://doi.org/10.1007/s00707-021-02965-y

    Article  MathSciNet  MATH  Google Scholar 

  • Amiri Roodan, V., Gómez-Pastora, J., Karampelas, I.H., González-Fernández, C., Bringas, E., Ortiz, I., Chalmers, J.J., Furlani, E.P., Swihart, M.T.: Formation and manipulation of ferrofluid droplets with magnetic fields in a microdevice: a numerical parametric study. Soft Matter 16(41), 9506–9518 (2020). https://doi.org/10.1039/D0SM01426E

    Article  Google Scholar 

  • Amirifar, L., Besanjideh, M., Nasiri, R., Shamloo, A., Nasrollahi, F., de Barros, N.R., Davoodi, E., Erdem, A., Mahmoodi, M., Hosseini, V.: Droplet-based microfluidics in biomedical applications. Biofabrication 14(2), 022001 (2021)

    Article  Google Scholar 

  • Anna, Lynn, S.: Droplets and Bubbles in Microfluidic Devices. Annu. Rev. Fluid Mech. 48(1), 285–309 (2016)

  • Anna, S.L., Mayer, H.C.: Microscale tipstreaming in a microfluidic flow focusing device. Phys. Fluids 18(12), 364 (2006)

    Article  MATH  Google Scholar 

  • Azarmanesh, M., Farhadi, M., Azizian, P.: Simulation of the double emulsion formation through a hierarchical T-junction microchannel. Int. J. Numer. Meth. Heat Fluid Flow 25(7), 1705–1717 (2015). https://doi.org/10.1108/HFF-09-2014-0294

    Article  MathSciNet  MATH  Google Scholar 

  • Ba, Y., Liu, H., Li, Q., Kang, Q., Sun, J.: Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 94(2), 023310 (2016)

    Article  MathSciNet  Google Scholar 

  • Bai, F., He, X., Yang, X., Zhou, R., Wang, C.: Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation. Int. J. Multiphase Flow 93, 130–141 (2017). https://doi.org/10.1016/j.ijmultiphaseflow.2017.04.008

    Article  MathSciNet  Google Scholar 

  • Baroud, C.N., Delville, J.P., Gallaire, F., Wunenburger, R.: Thermocapillary valve for droplet production and sorting. PhRvE 75(4), 46302–46302 (2007)

    Google Scholar 

  • Bashir, S., Rees, J.M., Zimmerman, W.B.: Simulations of microfluidic droplet formation using the two-phase level set method. Chem. Eng. Sci. 66(20), 4733–4741 (2011)

    Article  Google Scholar 

  • Bedram, A., Moosavi, A.: Droplet breakup in an asymmetric microfluidic T junction. Eur. Phys. J. E 34(8), 78–70 (2011)

    Article  Google Scholar 

  • Besanjideh, M., Shamloo, A., Hannani, S.K.: Enhanced oil-in-water droplet generation in a T-junction microchannel using water-based nanofluids with shear-thinning behavior: A numerical study. Phys. Fluids 33(1), 012007 (2021). https://doi.org/10.1063/5.0030676

  • Bi, D.-A.K., Tavares, M., Chénier, É., Vincent, S.: A review of geometrical interface properties for 3D Front-Tracking methods. Turbulence and Interactions 144–149 (2018)

  • Bijarchi, M.A., Yaghoobi, M., Favakeh, A., Shafii, M.B.: On-demand ferrofluid droplet formation with non-linear magnetic permeability in the presence of high non-uniform magnetic fields. Sci. Rep. 12(1), 10868 (2022). https://doi.org/10.1038/s41598-022-14624-w

    Article  Google Scholar 

  • Cao, J., Cheng, P., Hong, F.: Applications of electrohydrodynamics and Joule heating effects in microfluidic chips: A review. Sci. China Ser. E Technol. Sci. 52(12), 3477 (2009). https://doi.org/10.1007/s11431-009-0313-z

    Article  MATH  Google Scholar 

  • Chakraborty, I., Ricouvier, J., Yazhgur, P., Tabeling, P., Leshansky, A.M.: Microfluidic step-emulsification in axisymmetric geometry. Lab Chip 17(21), 3609–3620 (2017). https://doi.org/10.1039/C7LC00755H

    Article  Google Scholar 

  • Chakraborty, I., Ricouvier, J., Yazhgur, P., Tabeling, P., Leshansky, A.M.: Droplet generation at Hele-Shaw microfluidic T-junction. Phys. Fluids 31(2), 022010 (2019). https://doi.org/10.1063/1.5086808

  • Chen, L., Kang, Q., Mu, Y., He, Y.-L., Tao, W.-Q.: A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int. J. Heat Mass Transfer 76, 210–236 (2014a)

    Article  Google Scholar 

  • Chen, P.-C., Wu, M.-H., Wang, Y.-N.: Microchannel geometry design for rapid and uniform reagent distribution. Microfluid. Nanofluid. 17(2), 275–285 (2014b)

    Article  Google Scholar 

  • Chen, Q., Li, J., Song, Y., Christopher, D.M., Li, X.: Modeling of Newtonian droplet formation in power-law non-Newtonian fluids in a flow-focusing device. Heat Mass Transfer 56(9), 2711–2723 (2020). https://doi.org/10.1007/s00231-020-02899-6

    Article  Google Scholar 

  • Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, W.-C., Fan, Y.-W., Zhang, L.-L., Sun, B.-C., Luo, Y., Zou, H.-K., Chu, G.-W., Chen, J.-F.: Computational fluid dynamic simulation of gas-liquid flow in rotating packed bed: A review. Chinese J. Chem. Eng. 41, 85–108 (2022). https://doi.org/10.1016/j.cjche.2021.09.024

    Article  Google Scholar 

  • Chen, Y., Liu, X., Zhang, C., Zhao, Y.: Enhancing and suppressing effects of an inner droplet on deformation of a double emulsion droplet under shear. Lab Chip 15(5), 1255–1261 (2015a). https://doi.org/10.1039/C4LC01231C

    Article  Google Scholar 

  • Chen, Y., Liu, X., Zhao, Y.: Deformation dynamics of double emulsion droplet under shear. Appl. Phys. Lett. 106(14), 141601 (2015b)

    Article  Google Scholar 

  • Chen, Y., Wu, L., Zhang, C.: Emulsion droplet formation in coflowing liquid streams. PhRvE 87(1), 013002 (2013). https://doi.org/10.1103/PhysRevE.87.013002

  • Chen, Y., Wu, L., Zhang, L.: Dynamic behaviors of double emulsion formation in a flow-focusing device. Int. J. Heat Mass Transfer 82, 42–50 (2015c)

    Article  Google Scholar 

  • Chung, C., Hulsen, M.A., Ju, M.K., Ahn, K.H., Lee, S.J.: Numerical study on the effect of viscoelasticity on drop deformation in simple shear and 5:1:5 planar contraction/expansion microchannel. J. Nonnewton. Fluid Mech. 155(1–2), 80–93 (2008)

    Article  MATH  Google Scholar 

  • Chung, C., Ju, M.K., Hulsen, M.A., Ahn, H., Lee, S.J.: Effect of viscoelasticity on drop dynamics in 5: 1: 5 contraction/expansion microchannel flow. Chem. Eng. Sci. 64(22), 4515–4524 (2009)

    Article  Google Scholar 

  • Clime, L., Malic, L., Daoud, J., Lukic, L., Geissler, M., Veres, T.: Buoyancy-driven step emulsification on pneumatic centrifugal microfluidic platforms. Lab Chip 20(17), 3091–3095 (2020). https://doi.org/10.1039/D0LC00333F

    Article  Google Scholar 

  • Courant, R.: Variational Methods for the Solution of Problems of Equilibrium and Vibrations. TAMS 49(1) (1942)

  • Cramer, C., Fischer, P., Windhab, E.J.: Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 59(15), 3045–3058 (2004). https://doi.org/10.1016/j.ces.2004.04.006

    Article  Google Scholar 

  • Cybulski, O., Garstecki, P., Grzybowski, B.A.: Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nat. Phys. (2019)

  • Dangla, R., Fradet, E., Lopez, Y., Baroud, C.N.: The physical mechanisms of step emulsification. J. Phys. D Appl. Phys. 46(11), 114003 (2013)

    Article  Google Scholar 

  • Deng, C.J., Wang, H.Y., Huang, W.X., Cheng, S.M.: Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device. Colloids Surf. 533, 1–8 (2017). https://doi.org/10.1016/j.colsurfa.2017.05.041

    Article  Google Scholar 

  • Ding, Y., Howes, P.D., deMello, A.J.: Recent advances in droplet microfluidics. Anal. Chem. 92(1), 132–149 (2019)

    Article  Google Scholar 

  • Dressler, O.J., Casadevall i Solvas, X., DeMello, A.J.: Chemical and biological dynamics using droplet-based microfluidics. Annu. Rev. Anal. Chem. 10, 1–24 (2017)

    Google Scholar 

  • Du, W., Fu, T., Zhu, C., Ma, Y., Li, H.Z.: Breakup dynamics for high-viscosity droplet formation in a flow-focusing device: Symmetrical and asymmetrical ruptures. AIChE J. 62(1), 325–337 (2016). https://doi.org/10.1002/aic.15043

    Article  Google Scholar 

  • Eggersdorfer, M.L., Seybold, H., Ofner, A., Weitz, D.A., Studart, A.R.: Wetting controls of droplet formation in step emulsification. Proc. Natl. Acad. Sci. 115(38), 9479–9484 (2018)

    Article  Google Scholar 

  • Eggersdorfer, M.L., Zheng, W., Nawar, S., Mercandetti, C., Ofner, A., Leibacher, I., Koehler, S., Weitz, D.A.: Tandem emulsification for high-throughput production of double emulsions. Lab Chip 17(5), 936–942 (2017). https://doi.org/10.1039/C6LC01553K

    Article  Google Scholar 

  • Fontana, F., Ferreira, M.P., Correia, A., Hirvonen, J., Santos, H.A.: Microfluidics as a cutting-edge technique for drug delivery applications. J. Drug Deliv. Sci. Technol. 34, 76–87 (2016)

    Article  Google Scholar 

  • Gómez-Pastora, J., Amiri Roodan, V., Karampelas, I.H., Alorabi, A.Q., Tarn, M.D., Iles, A., Bringas, E., Paunov, V.N., Pamme, N., Furlani, E.P., Ortiz, I.: Two-Step Numerical Approach To Predict Ferrofluid Droplet Generation and Manipulation inside Multilaminar Flow Chambers. J. Phys. Chem. C 123(15), 10065–10080 (2019). https://doi.org/10.1021/acs.jpcc.9b01393

    Article  Google Scholar 

  • Galbiati, L., Andreini, P.: Flow pattern transition for horizontal air-water flow in capillary tubes. A microgravity “equivalent system” simulation. Int. Commun. Heat Mass Transf. 21(4), 461–468 (1994). https://doi.org/10.1016/0735-1933(94)90045-0

  • Gao, W., Chen, Y.: Microencapsulation of solid cores to prepare double emulsion droplets by microfluidics. Int. Commun. Heat Mass Transf. 135, 158–163 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.136

    Article  Google Scholar 

  • Garstecki, P., Fuerstman, M.J., Stone, H.A., Whitesides, G.M.: Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6(3), 437–446 (2006)

    Article  Google Scholar 

  • Garstecki, P., Stone, H.A., Whitesides, G.M.: Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions. Phys. Rev. Lett. 94(16), 164501 (2005)

  • Ge, X., Rubinstein, B.Y., He, Y., Bruce, F., Li, Z.: Double Emulsion with Ultrathin Shell by Microfluidic Step-Emulsification. Lab Chip 21(8), 1613–1622 (2021)

    Article  Google Scholar 

  • Ghaderi, A., Kayhani, M.H., Nazari, M., Fallah, K.: Drop formation of ferrofluid at co-flowing microcahnnel under uniform magnetic field. Eur. J. Mech. B Fluids. 67, 87–96 (2018). https://doi.org/10.1016/j.euromechflu.2017.08.010

    Article  MathSciNet  MATH  Google Scholar 

  • Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82–109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Girard, F., Antoni, M., Steinchen, A., Faure, S.: Numerical study of the evaporating dynamics of a sessile water droplet. Microgravity Sci. Technol. 18(3), 42–46 (2006). https://doi.org/10.1007/BF02870377

    Article  Google Scholar 

  • Gong, S., Cheng, P., Quan, X.: Lattice Boltzmann simulation of droplet formation in microchannels under an electric field. Int. J. Heat Mass Transfer 53(25), 5863–5870 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.057

    Article  MATH  Google Scholar 

  • Guido, S., Simeone, M.: Binary collision of drops in simple shear flow by computer-assisted video optical microscopy. J. Fluid Mech. 357, 1–20 (1998)

    Article  Google Scholar 

  • Guo, M.T., Rotem, A., Heyman, J.A., Weitz, D.A.: Droplet microfluidics for high-throughput biological assays. Lab. Chip. 12(12), 2146–2155 (2012)

    Article  Google Scholar 

  • Gupta, A., Kumar, R.: Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid. Nanofluid. 8(6), 799–812 (2010)

    Article  Google Scholar 

  • Gupta, A., Matharoo, H.S., Makkar, D., Kumar, R.: Droplet formation via squeezing mechanism in a microfluidic flow-focusing device. Comput. Fluids 100, 218–226 (2014)

    Article  Google Scholar 

  • Gupta, A., Murshed, S.M.S., Kumar, R.: Droplet formation and stability of flows in a microfluidic T-junction. Appl. Phys. Lett. 94(16), 164107 (2009). https://doi.org/10.1063/1.3116089

  • Gupta, A., Sbragaglia, M., Belardinelli, D., Sugiyama, K.: Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows. PhRvE 94(6), 063302 (2016). https://doi.org/10.1103/PhysRevE.94.063302

  • Han, W., Chen, X.: A review on microdroplet generation in microfluidics. J. Braz. Soc. Mech. Sci. Eng. 43(5), 247 (2021)

    Article  Google Scholar 

  • Hao, G., Li, L., Wu, L., Yao, F.: Electric-field-controlled Droplet Sorting in a Bifurcating Channel. Microgravity Sci. Technol. 34(2), 25 (2022). https://doi.org/10.1007/s12217-022-09944-5

    Article  Google Scholar 

  • He, X., Wu, J., Hu, T., Xuan, S., Gong, X.: A 3D-printed coaxial microfluidic device approach for generating magnetic liquid metal droplets with large size controllability. Microfluid. Nanofluid. 24(4), 1–14 (2020)

    Article  Google Scholar 

  • Hernández-Cid, D., Pérez-González, V.H., Gallo-Villanueva, R.C., González-Valdez, J., Mata-Gómez, M.A.: Modeling droplet formation in microfluidic flow-focusing devices using the two-phases level set method. Mater. Today Proc. 48, 30–40 (2022). https://doi.org/10.1016/j.matpr.2020.09.417

    Article  Google Scholar 

  • Hirt, C.W., Nichols, B.D.: Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  • Homma, S., Moriguchi, K., Kim, T., Koga, J.: Computations of Compound Droplet Formation from a Co-axial Dual Nozzle by a Three-Fluid Front-Tracking Method. J. Chem. Eng. Jpn. 47(2), 195–200 (2014)

    Article  Google Scholar 

  • Hoseinpour, B., Sarreshtehdari, A.: Lattice Boltzmann simulation of droplets manipulation generated in lab-on-chip (LOC) microfluidic T-junction. J. Mol. Liq. 297, 111736 (2020). https://doi.org/10.1016/j.molliq.2019.111736

  • Hu, Q., Jiang, T., Jiang, H.: Numerical Simulation and Experimental Validation of Liquid Metal Droplet Formation in a Co-Flowing Capillary Microfluidic Device. Micromachines 11(2), 169 (2020)

    Article  MathSciNet  Google Scholar 

  • Janssen, P., Anderson, P.: Boundary-integral method for drop deformation between parallel plates. Phys. Fluids 19(4), 043602 (2007)

    Article  MATH  Google Scholar 

  • Jiang, F., Xu, Y., Song, J., Lu, H.: Numerical study on the effect of temperature on droplet formation inside the microfluidic chip. J. Appl. Fluid Mech. 12(3), 831–843 (2019)

    Article  Google Scholar 

  • KöSter, S., Angilè, F., Duan, H., Agresti, J.J., Wintner, A., Schmitz, C., Rowat, A.C., Merten, C.A., Pisignano, D., Griffiths, A.D.: Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8(7), 1110–1115 (2008)

    Article  Google Scholar 

  • Kaminski, T.S., Garstecki, P.: Controlled droplet microfluidic systems for multistep chemical and biological assays. Chem. Soc. Rev. 46(20), 6210–6226 (2017)

    Article  Google Scholar 

  • Kawakatsu, T., Kikuchi, Y., Nakajima, M.: Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc. 74(3), 317–321 (1997)

    Article  Google Scholar 

  • Kumar, P., Pathak, M.: Droplet formation under wall slip in a microfluidic T-junction. J. Mol. Liq. 345, 117808 (2022a). https://doi.org/10.1016/j.molliq.2021.117808

  • Kumar, P., Pathak, M.: Dynamic wetting characteristics during droplet formation in a microfluidic T-junction. Int. J. Multiphase Flow 156, 104203 (2022b). https://doi.org/10.1016/j.ijmultiphaseflow.2022.104203

  • Laborie, B., Rouyer, F., Angelescu, D.E., Lorenceau, E.: Bubble Formation in Yield Stress Fluids Using Flow-Focusing and $T$-Junction Devices. Phys. Rev. Lett. 114(20), 204501 (2015). https://doi.org/10.1103/PhysRevLett.114.204501

  • Lan, W., Li, S., Luo, G.: Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel. Chem. Eng. Sci. 134, 76–85 (2015)

    Article  Google Scholar 

  • Larson, R.G.: The structure and rheology of complex fluids, vol. 150. Oxford University Press, New York (1999)

    Google Scholar 

  • Lee, J., Moon, H., Fowler, J., Schoellhammer, T., Kim, C.J.: Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens. Actuators A 95(2–3), 259–268 (2002)

    Article  Google Scholar 

  • Lee, T.Y., Choi, T.M., Shim, T.S., Frijns, R.A., Kim, S.H.: Microfluidic production of multiple emulsions and functional microcapsules. Lab Chip 16(18), 3415–3440 (2016)

    Article  Google Scholar 

  • Li, L., Zhang, C.: Electro-hydrodynamics of droplet generation in a co-flowing microfluidic device under electric control. Colloid. Surface. A 586, 124258 (2020). https://doi.org/10.1016/j.colsurfa.2019.124258

  • Li, Q., Luo, K.H., Kang, Q., He, Y., Chen, Q., Liu, Q.: Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62–105 (2016)

    Article  Google Scholar 

  • Li, X.B., Li, F.C., Yang, J.C., Kinoshita, H., Oishi, M., Oshima, M.: Study on the mechanism of droplet formation in T-junction microchannel. Chem. Eng. Sci. 69(1), 340–351 (2012)

    Article  Google Scholar 

  • Li, Z., Leshansky, A.M., Pismen, L.M., Tabeling, P.: Step-emulsification in a microfluidic device. Lab Chip 15(4), 1023–1031 (2015)

    Article  Google Scholar 

  • Lian, J., Luo, X., Huang, X., Wang, Y., Xu, Z., Ruan, X.: Investigation of microfluidic co-flow effects on step emulsification: Interfacial tension and flow velocities. Colloid. Surface. A 568, 381–390 (2019a). https://doi.org/10.1016/j.colsurfa.2019.02.040

    Article  Google Scholar 

  • Lian, J., Wu, J., Wu, S., Yu, W., Wang, P., Liu, L., Zuo, Q.: Investigation of viscous effects on droplet generation in a co-flowing step emulsification device. Colloid Surface A 629, 127468 (2021). https://doi.org/10.1016/j.colsurfa.2021.127468

  • Lian, J., Zheng, S., Liu, C., Xu, Z., Ruan, X.: Investigation of microfluidic co-flow effects on step emulsification: Wall contact angle and critical dimensions. Colloid. Surface. A 580, 123733 (2019b). https://doi.org/10.1016/j.colsurfa.2019.123733

  • Liu, J., Tan, S.-H., Yap, Y.F., Ng, M.Y., Nguyen, N.-T.: Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid. Nanofluid. 11(2), 177–187 (2011a). https://doi.org/10.1007/s10404-011-0784-7

    Article  Google Scholar 

  • Liu, J., Yap, Y.F., Nguyen, N.-T.: Numerical study of the formation process of ferrofluid droplets. Phys. Fluids 23(7), 072008 (2011b). https://doi.org/10.1063/1.3614569

  • Liu, J.W., Wang, X.P.: Phase field simulation of drop formation in a coflowing fluid. Int. J. Numer. Anal. Model. 12(2), 268–285 (2015)

    MathSciNet  MATH  Google Scholar 

  • Liu, M., Chen, S., Qi, X.b., Li, B., Shi, R., Liu, Y., Chen, Y., Zhang, Z.: Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching. Chem. Eng. J. 241, 466–476 (2014)

  • Liu, X., Wu, L., Zhao, Y., Chen, Y.: Study of compound drop formation in axisymmetric microfluidic devices with different geometries. Colloid. Surface. A 533, 87–98 (2017)

    Article  Google Scholar 

  • Liu, X., Zhang, C., Yu, W., Deng, Z., Chen, Y.: Bubble breakup in a microfluidic T-junction. Sci. Bullet. 61(10), 811–824 (2016). https://doi.org/10.1007/s11434-016-1067-1

    Article  Google Scholar 

  • Liu, Y., Jiang, X.: Why microfluidics? Merits and trends in chemical synthesis. Lab Chip 17(23), 3960–3978 (2017)

    Article  Google Scholar 

  • Liu, Z., Cai, F., Pang, Y., Ren, Y., Zheng, N., Chen, R., Zhao, S.: Enhanced droplet formation in a T-junction microchannel using electric field: A lattice Boltzmann study. Phys. Fluids 34(8), 082006 (2022). https://doi.org/10.1063/5.0100312

  • Liu, Z., Liu, X., Jiang, S., Zhu, C., Ma, Y., Fu, T.: Effects on droplet generation in step-emulsification microfluidic devices. Chem. Eng. Sci. 246, 116959 (2021)

    Article  Google Scholar 

  • Long, W., Tsutahara, M., Kim, L.S., Ha, M.Y.: Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel. Int. J. Multiphase Flow 34(9), 852–864 (2008)

    Article  MATH  Google Scholar 

  • Lu, P., Zhao, L., Zheng, N., Liu, S., Li, X., Zhou, X., Yan, J.: Progress and prospect of flow phenomena and simulation on two-phase separation in branching T-junctions: A review. Renew. Sust. Energ. Rev. 167, 112742 (2022). https://doi.org/10.1016/j.rser.2022.112742

  • Kahouadji, L., Nowak, E., Kovalchuk, N., Chergui, J., Juric, D., Shin, S., Simmons, M.J., Craster, R.V., Matar, O.K.: Simulation of immiscible liquid–liquid flows in complex microchannel geometries using a front-tracking scheme. Microfluidics & Nanofluidics (2018)

  • Malekzadeh, S., Roohi, E.: Investigation of Different Droplet Formation Regimes in a T-junction Microchannel Using the VOF Technique in OpenFOAM. Microgravity Sci. Technol. 27(3), 231–243 (2015). https://doi.org/10.1007/s12217-015-9440-2

    Article  Google Scholar 

  • Manshadi, M.K., Khojasteh, D., Abdelrehim, O., Gholami, M., Sanati-Nezhad, A.: Droplet-based microfluidic platforms and an overview with a focus on application in biofuel generation. Advances in Bioenergy and Microfluidic Applications, 387–406 (2021)

  • Miskin, M.Z., Jaeger, H.M.: Droplet formation and scaling in dense suspensions. Proc. Natl. Acad. Sci. 109(12), 4389–4394 (2012). https://doi.org/10.1073/pnas.1111060109

    Article  Google Scholar 

  • Mohammadi, K., Movahhedy, M.R., Khodaygan, S.: A multiphysics model for analysis of droplet formation in electrohydrodynamic 3D printing process. J. Aerosol. Sci. 135, 72–85 (2019). https://doi.org/10.1016/j.jaerosci.2019.05.001

    Article  Google Scholar 

  • Mohammadreza, N., Ali, Z.: Melt-spun Liquid Core Fibers: A CFD Analysis on Biphasic Flow in Coaxial Spinneret Die. Fibers Polym. 19(4), 905–913 (2018)

    Article  Google Scholar 

  • Montessori, A., Lauricella, M., Stolovicki, E., Weitz, D.A., Succi, S.: Jetting to dripping transition: Critical aspect ratio in step emulsifiers. Phys. Fluids 31(2), 021703 (2019). https://doi.org/10.1063/1.5084797

  • Montessori, A., Lauricella, M., Succi, S., Stolovicki, E., Weitz, D.: Elucidating the mechanism of step emulsification. Phys. Rev. Fluids 3(7), 072202 (2018)

    Article  Google Scholar 

  • Morozov, K.I., Leshansky, A.M.: Photonics of Template-Mediated Lattices of Colloidal Clusters. Langmuir 35(11), 3987–3991 (2019). https://doi.org/10.1021/acs.langmuir.8b03714

    Article  Google Scholar 

  • Mu, K., Si, T., Li, E., Xu, R.X., Ding, H.: Numerical study on droplet generation in axisymmetric flow focusing upon actuation. Phys. Fluids 30(1), 012111 (2018). https://doi.org/10.1063/1.5009601

  • Nangia, N., Patankar, N.A., Bhalla, A.P.S.: A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows. J. Comput. Phys. 398, 108804 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Nathawani, D.K., Knepley, M.G.: Droplet formation simulation using mixed finite elements. Phys. Fluids 34(6), 064105 (2022)

    Article  Google Scholar 

  • Navarro, R., Zinchenko, A.Z., Davis, R.H.: Boundary-integral study of a freely suspended drop in a T-shaped microchannel. Int. J. Multiphase Flow 130, 103379 (2020)

    Article  MathSciNet  Google Scholar 

  • Nguyen, N.T., Ting, T.H., Yap, Y.F., Wong, T.N., Chai, J., Ong, W.L., Zhou, J., Tan, S.H., Yobas, L.: Thermally mediated droplet formation in microchannels. Appl. Phys. Lett. 91(8), s10404 (2007)

    Article  Google Scholar 

  • Nooranidoost, M., Izbassarov, D., Muradoglu, M.: Droplet formation in a flow focusing configuration: Effects of viscoelasticity. Phys. Fluids 28(12), 123102 (2016). https://doi.org/10.1063/1.4971841

  • Notz, P.K., Basaran, O.A.: Dynamics of Drop Formation in an Electric Field. J. Colloid Interface Sci. 213(1), 218–237 (1999). https://doi.org/10.1006/jcis.1999.6136

    Article  Google Scholar 

  • Ofner, A., Mattich, I., Hagander, M., Dutto, A., Seybold, H., Rühs, P.A., Studart, A.R.: Controlled Massive Encapsulation via Tandem Step Emulsification in Glass. Adv. Funct. Mater. 29(4), 1806821 (2019). https://doi.org/10.1002/adfm.201806821

    Article  Google Scholar 

  • Ong, W.-L., Hua, J., Zhang, B., Teo, T.-Y., Zhuo, J., Nguyen, N.-T., Ranganathan, N., Yobas, L.: Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry. Sens. Actuators A 138(1), 203–212 (2007). https://doi.org/10.1016/j.sna.2007.04.053

    Article  Google Scholar 

  • Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Ouedraogo, Y., Gjonaj, E., Weiland, T., Gersem, H.D., Steinhausen, C., Lamanna, G., Weigand, B., Preusche, A., Dreizler, A., Schremb, M.: Electrohydrodynamic simulation of electrically controlled droplet generation. Int. J. Heat Fluid Flow 64, 120–128 (2017). https://doi.org/10.1016/j.ijheatfluidflow.2017.02.007

    Article  Google Scholar 

  • Park, S.-Y., Wu, T.-H., Chen, Y., Teitell, M.A., Chiou, P.-Y.: High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip 11(6), 1010–1012 (2011)

    Article  Google Scholar 

  • Payne, E.M., Holland-Moritz, D.A., Sun, S., Kennedy, R.T.: High-throughput screening by droplet microfluidics: Perspective into key challenges and future prospects. Lab Chip 20(13), 2247–2262 (2020)

    Article  Google Scholar 

  • Peng, L., Yang, M., Guo, S.-S., Liu, W., Zhao, X.-Z.: The effect of interfacial tension on droplet formation in flow-focusing microfluidic device. Biomed. Microdevices 13(3), 559–564 (2011). https://doi.org/10.1007/s10544-011-9526-6

  • Peskin, C.S.: Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Petersen, K., Brinkerhoff, J.: On the lattice Boltzmann method and its application to turbulent, multiphase flows of various fluids including cryogens: A review. Phys. Fluids 33(4), 041302 (2021)

    Article  Google Scholar 

  • Pollack, M.G., Fair, R.B., Shenderov, A.D.: Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77(11), 1725–1726 (2000)

    Article  Google Scholar 

  • Priest, C., Herminghaus, S., Seemann, R.: Generation of monodisperse gel emulsions in a microfluidic device. Appl. Phys. Lett. 88(2), 474 (2006)

    Article  Google Scholar 

  • Prosperetti, A., Tryggvason, G.: Computational Methods for Multiphase Flow. Cambridge University Press, Computational Methods for Multiphase Flow (2009)

    MATH  Google Scholar 

  • Qing-Yu Z., Sun, D.-K., Zhu M.F.: A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena. Chin. Phys. B 26(8), 84701–084701 (2017). https://doi.org/10.1088/1674-1056/26/8/084701

  • Qiu, T., Lee, T.-C., Mark, A.G., Morozov, K.I., Muenster, R., Mierka, O., Turek, S., Leshansky, A.M., Fischer, P.: Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5(1), 1–8 (2014). https://doi.org/10.1038/ncomms6119

    Article  Google Scholar 

  • Rahimi, M., Shams Khorrami, A., Rezai, P.: Effect of device geometry on droplet size in co-axial flow-focusing microfluidic droplet generation devices. Colloid. Surface. A 570, 510–517 (2019). https://doi.org/10.1016/j.colsurfa.2019.03.067

    Article  Google Scholar 

  • Rahimi, M., Yazdanparast, S., Rezai, P.: Parametric study of droplet size in an axisymmetric flow-focusing capillary device. Chin. J. Chem. Eng. 28(4), 1016–1022 (2020). https://doi.org/10.1016/j.cjche.2019.12.026

    Article  Google Scholar 

  • Rostami, B., Morini, G.L.: Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction. Int J Multiphase Flow 105, 202–216 (2018)

    Article  Google Scholar 

  • Rostami, F., Rahmani, M.: Parametric study and optimization of oil drop process in a co-flowing minichannel. Colloid. Surface. A 647, 129040 (2022). https://doi.org/10.1016/j.colsurfa.2022.129040

  • Salinas, P., Pavlidis, D., Xie, Z., Jacquemyn, C., Melnikova, Y., Jackson, M.D., Pain, C.C.: Improving the robustness of the control volume finite element method with application to multiphase porous media flow. Int. J. Numer. Methods Fluids 85(4), 235–246 (2017)

    Article  MathSciNet  Google Scholar 

  • Santra, S., Mandal, S., Chakraborty, S.: Phase-field modeling of multicomponent and multiphase flows in microfluidic systems: a review. Int. J. Numer. Method H 31(10), 3089–3131 (2021)

    Article  Google Scholar 

  • Sattari, A., Hanafizadeh, P.: Controlled preparation of compound droplets in a double rectangular co-flowing microfluidic device. Colloid. Surface. A 602, 125077 (2020). https://doi.org/10.1016/j.colsurfa.2020.125077

  • Sattari, A., Hanafizadeh, P.: Controllable preparation of double emulsion droplets in a dual-coaxial microfluidic device. J. Flow Chem. 11(4), 807–821 (2021). https://doi.org/10.1007/s41981-021-00155-4

    Article  Google Scholar 

  • Sattari, A., Hanafizadeh, P., Hoorfar, M.: Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Adv. Colloid Interface Sci. 282, 102208 (2020)

    Article  Google Scholar 

  • Saye, R.I., Sethian, J.A.: A review of level set methods to model interfaces moving under complex physics: Recent challenges and advances. Handb. Numer. Anal. 21, 509–554 (2020)

    MathSciNet  MATH  Google Scholar 

  • Shahin, H., Mortazavi, S.: Three-dimensional simulation of microdroplet formation in a co-flowing immiscible fluid system using front tracking method. J. Mol. Liq. 243, 737–749 (2017). https://doi.org/10.1016/j.molliq.2017.08.082

    Article  Google Scholar 

  • Shahin, H., Mortazavi, S.: Three-dimensional numerical simulation of axis-switching and micro-droplet formation in a co-flowing immiscible elliptic jet flow system using front tracking method. Comput. Fluids 198, 104406 (2020). https://doi.org/10.1016/j.compfluid.2019.104406

  • Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815 (1993)

    Article  Google Scholar 

  • Shao, J., Shu, C., Huang, H., Chew, Y.: Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Phys. Rev. E 89(3), 033309 (2014)

    Article  Google Scholar 

  • Sheikholeslam Noori, S.M., Taeibi Rahni, M., Shams Taleghani, S.A.: Numerical Analysis of Droplet Motion over a Flat Plate Due to Surface Acoustic Waves. Microgravity Sci. Technol. 32(4), 647–660 (2020). https://doi.org/10.1007/s12217-020-09784-1

    Article  Google Scholar 

  • Shi, Y., Tang, G.H., Xia, H.H.: Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices. Comput. Fluids 90, 155–163 (2014). https://doi.org/10.1016/j.compfluid.2013.11.025

    Article  MathSciNet  MATH  Google Scholar 

  • Singer-Loginova, I., Singer, H.: The phase field technique for modeling multiphase materials. Rep. Prog. Phys. 71(10), 106501 (2008)

    Article  Google Scholar 

  • Singh, R., Bahga, S.S., Gupta, A.: Electrohydrodynamic droplet formation in a T-junction microfluidic device. J. Fluid Mech. 905, A29 (2020). https://doi.org/10.1017/jfm.2020.749

    Article  MathSciNet  MATH  Google Scholar 

  • Sontti, S.G., Atta, A.: CFD analysis of microfluidic droplet formation in non–Newtonian liquid. Chem. Eng. J. 330, 245–261 (2017)

    Article  Google Scholar 

  • Sontti, S.G., Atta, A.: Numerical Insights on Controlled Droplet Formation in a Microfluidic Flow-Focusing Device. Ind. Eng. Chem. Res. 59(9), 3702–3716 (2020). https://doi.org/10.1021/acs.iecr.9b02137

    Article  Google Scholar 

  • Soroor, M., Zabetian Targhi, M., Tabatabaei, S.A.: Numerical and experimental investigation of a flow focusing droplet-based microfluidic device. Eur. J. Mech. B Fluids 89, 289–300 (2021). https://doi.org/10.1016/j.euromechflu.2021.06.013

    Article  MathSciNet  Google Scholar 

  • Stone, H.A., Leal, L.G.: Breakup of concentric double emulsion droplets in linear flows. J. Fluid Mech. 211, 123–156 (1990)

    Article  MATH  Google Scholar 

  • Sugiura, N.: Tong, JH, Nabetani, Seki: Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. J. Colloid Interf. Sci. 227(1), 95–103 (2000)

    Article  Google Scholar 

  • Sugiura, S., Nakajima, M., Iwamoto, S., Seki, M.: Interfacial Tension Driven Monodispersed Droplet Formation from Microfabricated Channel Array. Langmuir 17(18), 5562–5566 (2001)

    Article  Google Scholar 

  • Sunder, S., Tomar, G.: Numerical simulations of bubble formation from a submerged orifice and a needle: The effects of an alternating electric field. Eur. J. Mech. B Fluids 56, 97–109 (2016). https://doi.org/10.1016/j.euromechflu.2015.11.014

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, S.H., Nguyen, N.T., Yobas, L., Kang, T.G.: Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J. Micromech. Microeng. 20(4), 045004- (2010)

  • Teo, A.J., Yan, M., Dong, J., Xi, H.-D., Fu, Y., Tan, S.H., Nguyen, N.-T.: Controllable droplet generation at a microfluidic T-junction using AC electric field. Microfluid. Nanofluid. 24(3), 1–9 (2020)

    Article  Google Scholar 

  • Theberge, A., Courtois, F., Schaerli, Y., Fischlechner, M., Abell, C., Hollfelder, F., Huck, W.: Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. ChemInform 41(45), 5846–5868 (2010)

    Article  Google Scholar 

  • Thorsen, T., Roberts, R.W., Arnold, F.H., Quake, S.R.: Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86(18), 4163–4166 (2001). https://doi.org/10.1103/PhysRevLett.86.4163

    Article  Google Scholar 

  • Utada, A.S., Fernandez-Nieves, A., Stone, H.A., Weitz, D.A.: Dripping to Jetting Transitions in Coflowing Liquid Streams. Phys. Rev. Lett. 90(9), 094502 (2007)

  • Varma, V.B., Ray, A., Wang, Z.M., Wang, Z.P., Ramanujan, R.V.: Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields. Sci. Rep. 6(1), 37671 (2016). https://doi.org/10.1038/srep37671

    Article  Google Scholar 

  • Vu, T.V., Homma, S., Tryggvason, G., Wells, J.C., Takakura, H.: Computations of breakup modes in laminar compound liquid jets in a coflowing fluid - ScienceDirect. Int. J. Multiphase Flow 49(3), 58–69 (2013)

    Article  Google Scholar 

  • Wörner, M.: Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)

    Article  Google Scholar 

  • Wang, H., Fu, Y., Wang, Y., Yan, L., Cheng, Y.: Three-dimensional lattice Boltzmann simulation of Janus droplet formation in Y-shaped co-flowing microchannel. Chem. Eng. Sci. 225, 115819 (2020a). https://doi.org/10.1016/j.ces.2020.115819

  • Wang, H., Yuan, X., Liang, H., Chai, Z., Shi, B.: A brief review of the phase-field-based lattice Boltzmann method for multiphase flows. Capillarity 2(3), 33–52 (2019)

    Article  Google Scholar 

  • Wang, J.-X., Yu, W., Wu, Z., Liu, X., Chen, Y.: Physics-based statistical learning perspectives on droplet formation characteristics in microfluidic cross-junctions. Appl. Phys. Lett. 120(20), 204101 (2022). https://doi.org/10.1063/5.0086933

  • Wang, L.L., Li, G.J., Tian, H., Ye, Y.H.: Simulations of droplet formation in a t-junction micro-channel using the phase field method. Int. J. Comput. Methods 11(04), 1350096 (2014). https://doi.org/10.1142/s0219876213500965

    Article  Google Scholar 

  • Wang, M., Kong, C., Liang, Q., Zhao, J., Wen, M., Xu, Z., Ruan, X.: Numerical simulations of wall contact angle effects on droplet size during step emulsification. RSC Adv. 8(58), 33042–33047 (2018)

    Article  Google Scholar 

  • Wang, N., Semprebon, C., Liu, H., Zhang, C., Kusumaatmaja, H.: Modelling double emulsion formation in planar flow-focusing microchannels. J. Fluid Mech. 895, A22 (2020b). https://doi.org/10.1017/jfm.2020.299

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y., Chen, Z., Bian, F., Shang, L., Zhu, K., Zhao, Y.: Advances of droplet-based microfluidics in drug discovery. Expert Opin. Drug Discov. 15(8), 969–979 (2020c)

    Article  Google Scholar 

  • Wei Gao, C.Y.: Feng Yao: Droplets breakup via a splitting microchannel. Chin. Phys. B 29(5), 54702–054702 (2020). https://doi.org/10.1088/1674-1056/ab7b4b

    Article  Google Scholar 

  • Wilkes, E.D., Phillips, S.D., Basaran, O.A.: Computational and experimental analysis of dynamics of drop formation. Phys. Fluids 11(12), 3577–3598 (1999)

    Article  MATH  Google Scholar 

  • Woerner, M.: Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid. Nanofluid. 12(6), 841–886 (2012)

    Article  Google Scholar 

  • Wong, V.L., Loizou, K., Lau, P.L., Graham, R.S., Hewakandamby, B.N.: Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method. Chem. Eng. Sci. 174, 157–173 (2017)

    Article  Google Scholar 

  • Wu, L., Liu, X., Zhao, Y., Chen, Y.: Role of local geometry on droplet formation in axisymmetric microfluidics. Chem. Eng. Sci. 163, 56–67 (2017)

    Article  Google Scholar 

  • Xiao, W., Zhang, H., Luo, K., Mao, C., Fan, J.: Immersed boundary method for multiphase transport phenomena. Rev. Chem. Eng. 38(4), 363–405 (2020)

    Article  Google Scholar 

  • Yan, Q., Xuan, S., Ruan, X., Wu, J., Gong, X.: Magnetically controllable generation of ferrofluid droplets. Microfluid Nanofluidic 19(6), 1377–1384 (2015)

  • Yan, W.-C., Davoodi, P., Tong, Y.W., Wang, C.-H.: Computational study of core-shell droplet formation in coaxial electrohydrodynamic atomization process. AlChE J. 62(12), 4259–4276 (2016). https://doi.org/10.1002/aic.15361

    Article  Google Scholar 

  • Yan, Y., Guo, D., Wen, S.Z.: Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction. Chem. Eng. Sci. 84, 591–601 (2012). https://doi.org/10.1016/j.ces.2012.08.055

    Article  Google Scholar 

  • Yang, H., Zhou, Q., Fan, L.S.: Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction. Chem. Eng. Sci. 87, 100–110 (2013)

    Article  Google Scholar 

  • Yin, J., Kuhn, S.: Numerical simulation of droplet formation in a microfluidic T-junction using a dynamic contact angle model. Chem. Eng. Sci. 261, 117874 (2022). https://doi.org/10.1016/j.ces.2022.117874

  • Yin, S., Huang, Y., Wong, T.N., Ooi, K.T.: Dynamics of droplet in flow-focusing microchannel under AC electric fields. Int. J. Multiphase Flow 125, 103212 (2020). https://doi.org/10.1016/j.ijmultiphaseflow.2020.103212

  • Youngren, G.K., Acrivos, A.: Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69(02), 377–403 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, C., Wu, L., Li, L., Liu, M.: Experimental study of double emulsion formation behaviors in a one-step axisymmetric flow-focusing device. Exp. Therm. Fluid. Sci. (2019a). https://doi.org/10.1016/j.expthermflusci.2018.12.032

    Article  Google Scholar 

  • Yu, W., Li, B., Liu, X., Chen, Y.: Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device. Chem. Eng. Sci. 243, 116648 (2021). https://doi.org/10.1016/j.ces.2021.116648

  • Yu, W., Liu, X., Li, B., Chen, Y.: Experiment and prediction of droplet formation in microfluidic cross-junctions with different bifurcation angles. Int. J. Multiphase Flow 149, 103973 (2022). https://doi.org/10.1016/j.ijmultiphaseflow.2022.103973

  • Yu, W., Liu, X.D., Zhao, Y.J., Chen, Y.P.: Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles. Chem. Eng. Sci. 203, 259–284 (2019b). https://doi.org/10.1016/j.ces.2019.03.082

    Article  Google Scholar 

  • Zhang, C.B., Gao, W., Zhao, Y.J., Chen, Y.P.: Microfluidic generation of self-contained multicomponent microcapsules for self-healing materials. Appl. Phys. Lett. 113(20) (2018). https://doi.org/10.1063/1.5064439

  • Zhang, D.F., Stone, H.A.: Drop formation in viscous flows at a vertical capillary tube. Phys. Fluids 9(8), 2234–2242 (1997)

    Article  Google Scholar 

  • Zhang, H., Chang, H., Neuzil, P.: DEP-on-a-chip: Dielectrophoresis applied to microfluidic platforms. Micromachines 10(6), 423 (2019)

    Article  Google Scholar 

  • Zhang, J., Zhang, X., Zhao, W., Liu, H., Jiang, Y.: Effect of surfactants on droplet generation in a microfluidic T-junction: A lattice Boltzmann study. Phys. Fluids 34(4), 042121 (2022). https://doi.org/10.1063/5.0089175

  • Zhang, J.F.: Lattice Boltzmann method for microfluidics: models and applications. Microfluid. Nanofluid. 10(1), 1–28 (2011). https://doi.org/10.1007/s10404-010-0624-1

    Article  Google Scholar 

  • Zhang, S., Ling, K., Sun, N., Yang, S., Hao, X., Sui, X., Tao, W.-Q.: 2-D numerical study of ferrofluid droplet formation from microfluidic T-junction using VOSET method. Numer. Heat Transf. A 79(9), 611–630 (2021a). https://doi.org/10.1080/10407782.2021.1872283

    Article  Google Scholar 

  • Zhang, T., Zou, X., Xu, L., Pan, D., Huang, W.: Numerical investigation of fluid property effects on formation dynamics of millimeter-scale compound droplets in a co-flowing device. Chem. Eng. Sci. 229, 116156 (2021b). https://doi.org/10.1016/j.ces.2020.116156

  • Zhou, C., Yue, P., Feng, J.J.: Formation of simple and compound drops in microfluidic devices. Phys. Fluids 18(9), 1250 (2006)

    Article  Google Scholar 

  • Zhu, P., Wang, L.: Passive and active droplet generation with microfluidics: a review. Lab Chip 17(1), 34–75 (2017)

    Article  Google Scholar 

  • Zwan, E., Sman, R., Schro?N, K., Boom, R.: Lattice Boltzmann simulations of droplet formation during microchannel emulsification. J. Colloid Interface Sci. 335(1), 112 (2009)

Download references

Funding

This work is supported by National Natural Science Foundation of China (No. 52006187).

Author information

Authors and Affiliations

Authors

Contributions

Liangyu Wu, Jian Qian and Xuyun Liu wrote the main manuscript text. Suchen Wu wrote the numerical methods. Cheng Yu revised the manuscript. Xiangdong Liu designed the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiangdong Liu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Qian, J., Liu, X. et al. Numerical Modelling for the Droplets Formation in Microfluidics - A Review. Microgravity Sci. Technol. 35, 26 (2023). https://doi.org/10.1007/s12217-023-10053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-023-10053-0

Keywords

Navigation