Skip to main content
Log in

On entire solutions of system of Fermat-type difference and partial differential-difference equations in \(\mathbb {C}^n\)

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

The equation \(f(z)^n+g(z)^n=1\), \(n\in \mathbb {N}\) can be regarded as the Fermat Diophantine equation over the function field. In this paper we study the characterization of entire solutions of some system of Fermat type functional equations by taking \(e^{g_1(z)}\) and \(e^{g_2(z)}\) in the right hand side of each equation, where \(g_1(z)\) and \(g_2(z)\) are polynomials in \(\mathbb {C}^n\). Our results extend and generalize some recent results. Moreover, some examples have been exhibited to show that our results are precise to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no database were generated or analyzed during the current study.

References

  1. Biancofiore, A., Stoll, W.: Another Proof of the Lemma of the Logarithmic Derivative in Several Complex Variables, Recent Developments in Several Complex Variables, pp. 29–45. Princeton University Press, Princeton (1981)

    Book  Google Scholar 

  2. Cao, T.B., Korhonen, R.J.: A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables. J. Math. Anal. Appl. 444(2), 1114–1132 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cao, T.B., Xu, L.: Logarithmic difference lemma in several complex variables and partial difference equations. Ann. Math. Pure Appl. 199, 767–794 (2020)

    Article  MathSciNet  Google Scholar 

  4. Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of \(f(z+\eta )\) and difference equations in the complex plane. Ramanujan J. 16(1), 105–129 (2008)

    Article  MathSciNet  Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. Partial Differential Equations. Interscience, New York II (1962)

  6. Gao, L.Y.: Entire solutions of two types of systems of complex differential-difference equations. Acta Math. Sin. (Chin. Ser.) 59, 677–685 (2016)

    MathSciNet  Google Scholar 

  7. Garabedian, P.R.: Partial Differential Equations. Wiley, New York (1964)

    Google Scholar 

  8. Gross, F.: On the equation \(f^n(z) + g^n(z) = 1\). Bull. Am. Math. Soc. 72, 86–88 (1966)

    Article  Google Scholar 

  9. Gross, F.: On the equation \(f^n(z) + g^n(z) = h^n(z)\). Am. Math. Mon. 73, 1093–1096 (1966)

    Article  Google Scholar 

  10. Halburd, R.G., Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477–487 (2006)

    Article  MathSciNet  Google Scholar 

  11. Halburd, R.G., Korhonen, R.J.: Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31, 463–478 (2006)

    MathSciNet  Google Scholar 

  12. Haldar, G.: Solutions of Fermat-type partial differential difference equations in \(\mathbb{C} ^2\). Mediterr. J. Math. 20, 50 (2023). https://doi.org/10.1007/s00009-022-02180-6

    Article  Google Scholar 

  13. Haldar, G., Ahamed, M.B.: Entire solutions of several quadratic binomial and trinomial partial differential-difference equations in \(\mathbb{C} ^2\). Anal. Math. Phys. 12, 113 (2022). https://doi.org/10.1007/s13324-022-00722-5

    Article  Google Scholar 

  14. Hayman, W.K.: Meromorphic Functions. The Clarendon Press, Oxford (1964)

    Google Scholar 

  15. Hu, P.C., Li, P., Yang, C.C.: Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, vol. 1. Kluwer Academic Publishers, Dordrecht, Boston (2003)

    Google Scholar 

  16. Iyer, G.: On certain functional equations. J. Indian Math. Soc. 3, 312–315 (1939)

    MathSciNet  Google Scholar 

  17. Korhonen, R.J.: A difference Picard theorem for meromorphic functions of several variables. Comput. Methods Funct. Theory 12(1), 343–361 (2012)

    Article  MathSciNet  Google Scholar 

  18. Laine, I.: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin (1993)

    Book  Google Scholar 

  19. Lelong, P.: Fonctionnelles Analytiques et Fonctions Entières (n variables). Presses de L‘Universitè de Montrèal (1968)

  20. Li, B.Q.: On reduction of functional-differential equations. Complex Var. 31, 311–324 (1996)

    MathSciNet  Google Scholar 

  21. Li, B.Q.: On entire solutions of Fermat type partial differential equations. Int. J. Math. 15, 473–485 (2004)

    Article  MathSciNet  Google Scholar 

  22. Li, B.Q.: On certain non-linear differential equations in complex domains. Arch. Math. 91, 344–353 (2008)

    Article  MathSciNet  Google Scholar 

  23. Liu, M.L., Gao, L.Y.: Transcendental solutions of systems of complex differential-difference equations. Sci. Sin. Math. 49, 1–22 (2019)

    Google Scholar 

  24. Liu, K., Yang, L.Z.: On Entire Solutions of Some Differential-Difference Equations. Comput. Methods Funct. Theory 13, 433–447 (2012)

    Article  MathSciNet  Google Scholar 

  25. Liu, K., Cao, T.B., Cao, H.Z.: Entire solutions of Fermat-type differential-difference equations. Arch. Math. 99, 147–155 (2012)

    Article  MathSciNet  Google Scholar 

  26. Liu, K., Yang, L.Z.: A note on meromorphic solutions of Fermat types equations. An. Stiint. Univ. Al. I. Cuza Lasi Mat. (N. S.) 1, 317–325 (2016)

    MathSciNet  Google Scholar 

  27. Montel, P.: Lecons sur les familles de nomales fonctions analytiques et leurs applications. Gauthier-Viuars Paris, 135–136 (1927)

  28. Pólya, G.: On an integral function of an integral function. J. Lond. Math. Soc. 1, 12–15 (1926)

    Article  Google Scholar 

  29. Rauch, J.: Partial Differential Equations. Springer-Verlag, New York (1991)

    Book  Google Scholar 

  30. Ronkin, L.I.: Introduction to the Theory of Entire Functions of Several Variables. American Mathematical Society, Providence (1974)

    Book  Google Scholar 

  31. Saleeby, E.G.: Entire and meromorphic solutions of Fermat-type partial differential equations. Analysis (Munich) 19, 369–376 (1999)

    MathSciNet  Google Scholar 

  32. Saleeby, E.G.: On entire and meromorphic solutions of \(\lambda u^{k}+\sum _{i=1}^{n}u_{z_i}^m=1\). Complex Var. Theory Appl. 49, 101–107 (2004)

    MathSciNet  Google Scholar 

  33. Stoll, W.: Holomorphic Functions of Finite Order in Several Complex Variables. American Mathematical Society, Providence (1974)

    Google Scholar 

  34. Tang, J.F., Liao, L.W.: The transcendental meromorphic solutions of a certain type of non-linear differential equations. J. Math. Anal. Appl. 334, 517–527 (2007)

    Article  MathSciNet  Google Scholar 

  35. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebra. Ann. Math. 141, 553–572 (1995)

    Article  MathSciNet  Google Scholar 

  36. Wiles, A.: Modular elliptic curves and Fermats last theorem. Ann. Math. 141, 443–551 (1995)

    Article  MathSciNet  Google Scholar 

  37. Wu, L.L., Hu, P.C.: Entire solutions on a system of Fermat type Q-difference-differential equations. Anal. Math. 48, 1257–1280 (2022)

    Article  MathSciNet  Google Scholar 

  38. Xu, L., Cao, T.B.: Solutions of complex Fermat-type partial difference and differential-difference equations. Mediterr. J. Math. 15, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  39. Xu, L., Cao, T.B.: Correction to: solutions of complex fermat-type partial difference and differential-difference equations. Mediterr. J. Math. 17, 1–4 (2020)

    Article  MathSciNet  Google Scholar 

  40. Xu, H.Y., Haldar, G.: Solutions of complex nonlinear functional equations including second order partial differential and difference equations in \(\mathbb{C} ^2\), Electron. J. Differ. Equ. 43, 1–18 (2023)

    Article  Google Scholar 

  41. Xu, X.Y., Wang, H.: Notes on the existence of entire solutions for several partial differential-difference equations. Bull. Iran. Math. Soc. 47, 1477–1489 (2021)

    Article  MathSciNet  Google Scholar 

  42. Xu, X.Y., Liu, S.Y., Li, Q.P.: Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type. J. Math. Anal. Appl. 483, 123–641 (2020)

    Article  MathSciNet  Google Scholar 

  43. Zheng, X.M., Xu, X.Y.: Entire solutions of some Fermat type functional equations concerning difference and partial differential in \(\mathbb{C} ^2\). Anal. Math. 48, 199–226 (2022). https://doi.org/10.1007/s10476-021-0113-7

Download references

Funding

There is no funding received from any organizations for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam Haldar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, G. On entire solutions of system of Fermat-type difference and partial differential-difference equations in \(\mathbb {C}^n\). Rend. Circ. Mat. Palermo, II. Ser (2024). https://doi.org/10.1007/s12215-023-00997-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12215-023-00997-y

Keywords

Mathematics Subject Classification

Navigation