Skip to main content
Log in

A Difference Picard Theorem for Meromorphic Functions of Several Variables

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

It is shown that if n ∈ ℕ, c ∈ ℂn, and three distinct values of a meromorphic function f: ℂn sr 1 of hyper-order gV(f) strictly less than 2/3 have forward invariant pre-images with respect to a translation τ: ℂn sr ℂn, τ (z) = z + c, then f is a periodic function with period c. This result can be seen as a generalization of M. Green’s Picard-Type Theorem in the special case where gV(f) < 2/3, since the empty pre-images of the usual Picard exceptional values are by definition always forward invariant. In addition, difference analogues of the Lemma on the Logarithmic Derivative and of the Second Main Theorem of Nevanlinna theory for meromorphic functions ℂn → ℙ P1 are given, and their applications to partial difference equations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz, R. G. Halburd and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), 889–905.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Biancofiore and W. Stoll, Another proof of the lemma of the logarithmic derivative in several complex variables, in: J. E. Fornaess (ed.), Recent Developments in Several Complex Variables, Ann. Math. Stud., vol. 100, Princeton University Press, New Jersey, 1981, pp. 29–45.

    Google Scholar 

  3. J. Carlson and P. Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. Math. 95 (1972), 557–584.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Cherry and Z. Ye, Nevanlinna’s Theory of Value Distribution, Springer-Verlag, Berlin, 2001.

    Book  MATH  Google Scholar 

  5. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z +η) and difference equations in the complex plane, Ramanujan J. 16 no.1 (2008), 105–129.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Cowen and P. Griffiths, Holomorphic curves and metrics of negative curvature, J. Analyse Math. 29 (1976), 93–152.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs, vol. 236, American Mathematical Society, Providence, RI, 2008; translated from the 1970 Russian original by Mikhail Ostrovskii, with an appendix by Alexandre Eremenko and James K. Langley.

    MATH  Google Scholar 

  8. P. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145–220.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. I. Gromak, I. Laine and S. Shimomura, Painlevé Differential Equations in the Complex Plane, Walter de Gruyter, Berlin, 2002.

    Book  MATH  Google Scholar 

  10. R. G. Halburd, R. Korhonen and K. Tohge, Cartan’s value distribution theory for Casorati determinants, arXiv:0903.3236 (2009).

  11. R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477–487.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), 463–478.

    MathSciNet  MATH  Google Scholar 

  13. R. G. Halburd and R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. London Math. Soc. 94 no.2 (2007), 443–474.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. G. Halburd and R. J. Korhonen, Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations, J. Phys. A: Math. Theor. 40 (2007), R1–R38.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

    MATH  Google Scholar 

  16. A. Hinkkanen, A sharp form of Nevanlinna’s second fundamental theorem, Invent. Math. 108 (1992), 549–574.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. O. Kujala and A. L. Vitter (eds.), Value-Distribution Theory, Part A, Proceedings of the Tulane university program on value-distribution theory in complex analysis and related topics in differential geometry, Pure and Applied Mathematics, vol. 25, Marcel Dekker, Inc., Boston, Dordrecht, New York, London, 1974.

    Google Scholar 

  18. I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.

    Book  Google Scholar 

  19. A. Z. Mohon’ko, The Nevanlinna characteristics of certain meromorphic functions, Teor. Funktsii Funktsional. Anal. i Prilozhen 14 (1971), 83–87 (in Russian).

    MathSciNet  Google Scholar 

  20. J. Noguchi, Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J. 83 (1981), 213–233.

    MathSciNet  MATH  Google Scholar 

  21. M. Ru, Nevanlinna Theory and its Relation to Diophantine Approximation, vol. 1052, World Scientific Publishing Co., Inc., Singapore, 2001.

    Book  Google Scholar 

  22. W. Stoll, Mehrfache Integrale auf komplexen Mannigfaltigkeiten, Math. Zeitschr. 57 (1952), 116–152.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, Regional Conference Series in Mathematics, no. 21, Conference Board of the Mathematical Sciences, Providence, R.I., 1974.

    MATH  Google Scholar 

  24. W. Stoll, Value Distribution Theory for Meromorphic Maps, Aspects of Mathematics, vol. E7, Friedr. Vieweg & Sohn, Braunschweig, Wiesbaden, 1985.

    MATH  Google Scholar 

  25. G. Valiron, Sur la dérivée des fonctions algébroïdes, Bull. Soc. Math. France 59 (1931), 17–39.

    MathSciNet  Google Scholar 

  26. A. Vitter, The lemma of the logarithmic derivative in several complex variables, Duke Math. J. 44 (1977), 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. M. Wong and W. Stoll, Second main theorem of Nevanlinna theory for non-equidimensional meromorphic maps, Amer. J. Math. 116 (1994), 1031–1071.

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Ye, On Nevanlinna’s second main theorem in projective space, Invent. Math. 122 (1995), 475–507.

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Ye, A sharp form of Nevanlinna’s second main theorem for several complex variables, Math. Z. 222 (1996), 81–95.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risto Korhonen.

Additional information

The research reported in this paper was supported in part by the Academy of Finland grant #118314 and #210245, the Isaac Newton Institute for Mathematical Sciences, and the Nord-Forsk foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korhonen, R. A Difference Picard Theorem for Meromorphic Functions of Several Variables. Comput. Methods Funct. Theory 12, 343–361 (2012). https://doi.org/10.1007/BF03321831

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321831

Keywords

2000 MSC

Navigation