Skip to main content
Log in

Semilinear degenerate elliptic boundary value problems via the Semenov approximation

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of static bifurcation theory for a class of degenerate boundary value problems for semilinear elliptic differential operators of second-order which includes as particular cases the Dirichlet and Robin problems. The purpose of this paper is to generalize some results of Szulkin (Nonlinear Anal TMA 6:95–116, 1982) to the degenerate case. We study the behavior of nontrivial solution branches for bounded nonlinear terms, and prove that the branches turn back towards the first eigenvalue of the linearized degenerate boundary value problem. Our proof is based on global static bifurcation theory for positive mappings in ordered Banach spaces, with the special emphasis on the Semenov approximation in Chemistry. The approach here is distinguished by the extensive use of the ideas and techniques characteristic of the recent developments in the \(L^{p}\) theory of pseudo-differential operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)

    MATH  Google Scholar 

  3. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    MathSciNet  MATH  Google Scholar 

  4. Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Funct. Anal. 11, 346–384 (1972)

    MathSciNet  MATH  Google Scholar 

  5. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Amann, H.: Nonlinear eigenvalue problems having precisely two solutions. Math. Z. 150, 27–37 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Amann, H., Ambrosetti, A., Mancini, G.: Elliptic equations with noninvertible Fredholm linear part and bounded nonlinearities. Math. Z. 158, 179–194 (1978)

    MathSciNet  MATH  Google Scholar 

  8. Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  9. Ambrosetti, A., Mancini, G.: Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue. J. Differ. Equ. 28, 220–245 (1978)

    MathSciNet  MATH  Google Scholar 

  10. Ambrosetti, A., Mancini, G.: Theorems of existence and multiplicity for nonlinear elliptic problems with noninvertible linear part. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 5, 15–28 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Ambrosetti, A., Mancini, G.: Sharp nonuniqueness results for some nonlinear problems. Nonlinear Anal. TMA 3, 635–645 (1979)

    MathSciNet  MATH  Google Scholar 

  12. Ambrosetti, A., Prodi, G.: On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. 93, 231–247 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis, Paperback Edition (with Corrections). Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  14. Anh, C.T., My, B.K.: Existence and non-existence of solutions to a Hamiltonian strongly degenerate elliptic system. Adv. Nonlinear Anal. 8, 661–678 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat. 4, 417–453 (1962)

    MathSciNet  MATH  Google Scholar 

  16. Berestycki, H.: Remarques sur le nombre de solutions de certains problèmes semi-linéaires elliptiques. C. R. Acad. Sci. Paris Sér. A-B 289, A633–A636 (1979)

    MATH  Google Scholar 

  17. Berger, M.S.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)

    MATH  Google Scholar 

  18. Berger, M.S.: Nonlinear problems with exactly three solutions. Indiana Univ. Math. J. 28, 689–698 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Bergh, L., Löfström, J.: Interpolation Spaces, an Introduction. Springer, Berlin (1976)

    MATH  Google Scholar 

  20. Bony, J.-M.: Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sc. Paris Sér. A-B 265, A333–A336 (1967)

    MathSciNet  MATH  Google Scholar 

  21. Bourdaud, G.: \(L^{p}\)-estimates for certain non-regular pseudo-differential operators. Commun. Partial Differ. Equ. 7, 1023–1033 (1982)

    MATH  Google Scholar 

  22. Brown, R.F.: A Topological Introduction to Nonlinear Analysis, 3rd edn. Springer, Cham (2014)

    MATH  Google Scholar 

  23. Chang, K.-C.: Methods in Nonlinear Analysis. Springer Monographs in Mathematics. Springer, Berlin (2005)

    Google Scholar 

  24. Chazarain, J., Piriou, A.: Introduction à la théorie des équations aux dérivées partielles linéaires. Gauthier-Villars, Paris (1981)

    MATH  Google Scholar 

  25. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, Berlin (1982)

    MATH  Google Scholar 

  26. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    MathSciNet  MATH  Google Scholar 

  27. Dancer, E.N.: Global solution branches for positive mappings. Arch. Ration. Mech. Anal. 52, 181–192 (1973)

    MathSciNet  MATH  Google Scholar 

  28. de Figueiredo, D.G.: Positive solutions of semilinear elliptic problems. In: Differential Equations. Lecture Notes in Mathematics, vol. 957, pp. 34–87. Springer, Berlin (1982)

  29. Drábek, P., Milota, J.: Methods of Nonlinear Analysis, Applications to Differential Equations, 2nd ed. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser/Springer, Basel (2013)

  30. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 Edition. Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  31. Hörmander, L.: The Analysis of Linear Partial Differential Operators III, 1994th edn. Grundlehren Math. Wiss. Springer, Berlin (1994)

  32. Iwasaki, C.: The asymptotic expansion of the fundamental solution for parabolic initial-boundary value problems and its application. Osaka J. Math. 31, 663–728 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Kazdan, J.L.: Unique continuation in geometry. Commun. Pure Appl. Math. 41, 667–681 (1988)

    MathSciNet  MATH  Google Scholar 

  34. Kogoj, A., Lanconelli, E.: On semilinear \(\Delta _{\lambda }\)-Laplace equation. Nonlinear Anal. TMA 75, 4637–4649 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Kohn, J.J., Nirenberg, L.: Non-coercive boundary value problems. Commun. Pure Appl. Math. 18, 443–492 (1965)

    MathSciNet  MATH  Google Scholar 

  36. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. P. Noordhoff, Groningen (1964)

    MATH  Google Scholar 

  37. Kreĭn, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Am. Math. Soc. Transl. 10, 199–325 (1962)

    Google Scholar 

  38. Landesman, E.A., Lazer, A.C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19, 609–623 (1970)

    MathSciNet  MATH  Google Scholar 

  39. Leray, J., Schauder, J.: Topologie et équations fonctionelles. J. Ann. Sci. École Norm. Sup. 51, 45–78 (1934)

    MATH  Google Scholar 

  40. Lyapunov, A.M.: The general problem of the stability of motion, Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian original. With an editorial (historical introduction) by Fuller, a biography of Lyapunov by V. I. Smirnov, and the bibliography of Lyapunov’s works collected by J. F. Barrett. Lyapunov centenary issue. Int. J. Control 55, 531–773 (1992)

    Google Scholar 

  41. Marano, S.A., Mosconi, S.J.N.: Some recent results on the Dirichlet problem for \((p, q)\)-Laplace equations. Discr. Contin. Dyn. Syst. Ser. S 11, 279–291 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Miranda, C.: Partial Differential Equations of Elliptic Type, second revised edn. Springer, Berlin (1970)

    MATH  Google Scholar 

  43. Nirenberg, L.: Topics in Nonlinear Functional Analysis, Revised Reprint of the 1974 Original. Courant Lecture Notes in Mathematics, No, 6. New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence (2001)

  44. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis—Theory and Methods. Springer Monographs in Mathematics. Springer, Cham (2019)

    Google Scholar 

  45. Papageorgiou, N.S., Zhang, C.: Noncoercive resonant \((p,2)\)-equations with concave terms. Adv. Nonlinear Anal. 9, 228–249 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Plastock, R.A.: Nonlinear Fredholm maps of index zero and their singularities. Proc. Am. Math. Soc. 68, 317–322 (1978)

    MathSciNet  MATH  Google Scholar 

  47. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    MathSciNet  MATH  Google Scholar 

  48. Reed, M., Simon, B.: Methods of Modern Mathematical physics, IV: Analysis of Operators. Academic Press, San Diego (1978)

    MATH  Google Scholar 

  49. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter, Berlin (1996)

    MATH  Google Scholar 

  50. Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen, III. Teil. Über die Auflösung der nichtlinearen Integralgleichung und die Verzweigung ihrer Lösongen. Math. Ann. 65, 370–399 (1908)

    MathSciNet  MATH  Google Scholar 

  51. Semenov, N.N.: Chemical Kinetics and Chain Reactions. Clarendon Press, Oxford (1935)

    Google Scholar 

  52. Szulkin, A.: On the number of solutions of some semilinear elliptic boundary value problems. Nonlinear Anal. TMA 6, 95–116 (1982)

    MathSciNet  MATH  Google Scholar 

  53. Taira, K.: On some degenerate oblique derivative problems. J. Fac. Sci. Univ. Tokyo Sec. IA Math. 23, 259–287 (1976)

    MathSciNet  MATH  Google Scholar 

  54. Taira, K.: Boundary value problems for elliptic integro-differential operators. Math. Z. 222, 305–327 (1996)

    MathSciNet  MATH  Google Scholar 

  55. Taira, K.: Bifurcation for nonlinear elliptic boundary value problems I. Collect. Math. 47, 207–229 (1996)

    MathSciNet  MATH  Google Scholar 

  56. Taira, K.: Diffusive logistic equations with degenerate boundary conditions. Mediterr. J. Math. 1, 315–365 (2004)

    MathSciNet  MATH  Google Scholar 

  57. Taira, K.: Degenerate elliptic eigenvalue problems with indefinite weights. Mediterr. J. Math. 5, 133–162 (2008)

    MathSciNet  MATH  Google Scholar 

  58. Taira, K.: Degenerate elliptic boundary value problems with asymmetric nonlinearity. J. Math. Soc. Jpn. 62, 431–465 (2010)

    MathSciNet  MATH  Google Scholar 

  59. Taira, K.: Multiple solutions of semilinear degenerate elliptic boundary value problems. Math. Nachr. 284, 1–19 (2011)

    MathSciNet  MATH  Google Scholar 

  60. Taira, K.: Multiple solutions of semilinear degenerate elliptic boundary value problems II. Math. Nachr. 284, 1554–1566 (2011)

    MathSciNet  MATH  Google Scholar 

  61. Taira, K.: Degenerate elliptic boundary value problems with asymptotically linear nonlinearity. Rend. Circ. Mat. Palermo 2(60), 283–308 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Taira, K.: Multiple solutions of semilinear elliptic problems with degenerate boundary conditions. Mediterr. J. Math. 10, 731–752 (2013)

    MathSciNet  MATH  Google Scholar 

  63. Taira, K.: A mixed problem of linear elastodynamics. J. Evol. Equ. 13, 481–507 (2013)

    MathSciNet  MATH  Google Scholar 

  64. Taira, K.: Semigroups, Boundary Value Problems and Markov Processes. Springer Monographs in Mathematics, 2nd edn. Springer, Berlin (2014)

    Google Scholar 

  65. Taira, K.: Analytic Semigroups and Semilinear Initial-Boundary Value Problems. London Mathematical Society Lecture Note Series, vol. 434, 2nd edn. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  66. Taira, K.: Spectral analysis of the hypoelliptic Robin problem. Ann. Univ. Ferrara Sez. VII Sci. Mat. 65, 171–199 (2019)

    MathSciNet  MATH  Google Scholar 

  67. Taira, K.: Dirichlet problems with discontinuous coefficients and Feller semigroups. Rend. Circ. Mat. Palermo 2(69), 287–323 (2020)

    MathSciNet  MATH  Google Scholar 

  68. Taira, K.: Ventcel’ boundary value problems for elliptic Waldenfels operators. Boll. Unione Mat. Ital. 13, 213–256 (2020)

    MathSciNet  MATH  Google Scholar 

  69. Taira, K.: Boundary value problems and Markov processes. Lecture Notes in Mathematics, vol. 1499, 3rd edn. Springer, Berlin (2020)

    MATH  Google Scholar 

  70. Taira, K., Umezu, K.: Bifurcation for nonlinear elliptic boundary value problems II. Tokyo J. Math. 19, 387–396 (1996)

    MathSciNet  MATH  Google Scholar 

  71. Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics, vol. 84. Birkhäuser, Basel (1992)

    Google Scholar 

  72. Troianiello, G.M.: Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics. Plenum Press, New York (1987)

    MATH  Google Scholar 

  73. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  74. Yosida, K.: Functional Analysis, Reprint of the Sixth (1980) Edition. Classics in Mathematics. Springer, Berlin (1980)

    Google Scholar 

  75. Zeidler, E.: Nonlinear Functional Analysis and Its Applications I. Springer, Berlin (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the referees for their valuable suggestions and for informing me of additional references, which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Taira.

Additional information

Dedicated to Professor Jerome Arthur Goldstein on the occasion of his 80th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The maximum principle in \(L^{p}\) Sobolev spaces

Appendix: The maximum principle in \(L^{p}\) Sobolev spaces

In this appendix we formulate various maximum principles for second-order, elliptic differential operators with discontinuous coefficients such as the weak and strong maximum principles (Theorems 10.1 and 10.2) and the Hopf boundary point lemma (Lemma 10.1) in the framework of \(L^{p}\) Sobolev spaces. The results here are adapted from Bony [20], Troianiello [72, Chapter 3] and also Taira [64, Chapter 8].

Let D be a bounded domain in Euclidean space \(\mathbf {R}^{N}\), \(N \ge 3\), with boundary \(\partial D\) of class \(C^{1,1}\). We consider a second-order, uniformly elliptic differential operator A with real discontinuous coefficients in non-divergence form

$$\begin{aligned} Au := - \sum _{i,j=1}^{N} a^{ij}(x) \dfrac{\partial ^{2}u}{\partial x_{i} \partial x_{j}} + \sum _{i=1}^{N} b^{i}(x) \dfrac{\partial u}{\partial x_{i}} + c(x)u. \end{aligned}$$

More precisely, we assume that the coefficients \(a^{ij}(x)\), \(b^{i}(x)\) and c(x) of the differential operator A satisfy the following three conditions:

  1. (1)

    \(a^{ij}(x) \in L^{\infty }(D)\), \(a^{ij}(x) = a^{ji}(x)\) for almost all \(x \in D\) and there exist a constant \(\lambda > 0\) such that

    $$\begin{aligned} \dfrac{1}{\lambda } \vert \xi \vert ^{2} \le \sum _{i,j=1}^{N} a^{ij}(x)\xi _{i}\xi _{j} \le \lambda \left| \xi \right| ^{2} \quad \text{ for } \text{ almost } \text{ all } x \in D \text{ and } \text{ all } \xi \in \mathbf {R}^{N}. \end{aligned}$$
  2. (2)

    \(b^{i}(x) \in L^{\infty }(D)\) for all \(1 \le i \le N\).

  3. (3)

    \(c(x) \in L^{\infty }(D)\) and \(c(x) \ge 0\) for almost all \(x \in D\).

First, we state a variant of the weak maximum principle in the framework of \(L^{p}\) Sobolev spaces, due to Bony [20] [72, Chapter 3, Lemma 3.25]:

Theorem 10.1

(the weak maximum principle) If a function \(u \in W^{2,p}(D)\), \(N< p < \infty \), satisfies the condition

$$\begin{aligned} Au(x) \le 0 \quad \text{ for } \text{ almost } \text{ all } x \in D, \end{aligned}$$

then we have the inequality

$$\begin{aligned} \max _{\overline{D}}u \le \max _{\partial D} u^{+}, \end{aligned}$$

where

$$\begin{aligned} u^{+}(x) = \max \left\{ u(x),0\right\} \quad \text{ for } x \in \overline{D}. \end{aligned}$$

A detailed proof of Theorem 10.1 is given in Taira [67, Theorem 8.1].

Secondly, the Hopf boundary point lemma reads as follows [72, Chapter 3, Lemma 3.26, 68, Lemma 6.1]:

Lemma 10.1

(the boundary point lemma) Assume that a function \(u \in W^{2,p}(D)\), \(N< p < \infty \), satisfies the condition

$$\begin{aligned} Au(x) \le 0 \quad \text{ for } \text{ almost } \text{ all } x \in D. \end{aligned}$$

If u(x) attains a non-negative, strict local maximum at a point \(x_{0}^{\prime }\) of \(\partial D\), then we have the inequality

$$\begin{aligned} \dfrac{\partial u}{\partial \varvec{\nu }}(x_{0}^{\prime }) > 0 \end{aligned}$$

(see Fig. 1).

Finally, we can obtain the following strong maximum principle for the operator A [20, Théorème 2, 68, Theorem 6.2, 72, Chapter 3, Theorem 3.27]:

Theorem 10.2

(the strong maximum principle) Assume that a function \(u \in W^{2,p}(D)\), \(N< p < \infty \),satisfies the condition

$$\begin{aligned} Au(x) \le 0 \quad \text{ for } \text{ almost } \text{ all } x \in D. \end{aligned}$$

If u(x) attains a non-negative maximum at an interior point \(x_{0}\) of D, then it is a (non-negative) constant function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taira, K. Semilinear degenerate elliptic boundary value problems via the Semenov approximation. Rend. Circ. Mat. Palermo, II. Ser 70, 1305–1388 (2021). https://doi.org/10.1007/s12215-020-00560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00560-z

Keywords

Mathematics Subject Classification

Navigation