Skip to main content

Advertisement

Log in

In vitro propagation and synseed production of scarlet salvia (Salvia splendens)

  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The present study provides a protocol for high-frequency in vitro propagation and short-term conservation using encapsulation technology of Salvia splendens. Nodal segments were more responsive than shoot tips in terms of shoot multiplication. Murashige and Skoog’s (MS) basal medium augmented with 5.0 µM 6-benzyl adenine (BA) was optimum for shoot induction through both explants. MS medium supplemented with 5.0 µM BA and 0.5 µM α-naphthalene acetic acid induced a maximum of 15.0 shoots per nodal segment and 5.0 cm shoot length after 4 weeks of incubation. Microshoots were best rooted (30.6 roots per shoot) on half-strength MS basal medium containing 2.5 µM indole-3-acetic acid (IAA). For synseed preparation, nodal segments were encapsulated in 4 % Na-alginate with different gel matrices and 100 mM CaCl2·2H2O (complexing agent). Maximum conversion (63.6 %) of synseeds into plantlets was achieved on MS basal medium when they were prepared with the gel matrix of MS basal medium supplemented with 5.0 µM BA and 2.5 µM IAA. Pretreatment of synseeds with 100 mM KNO3 for 30 min, prior to incubation on the planting media significantly improved conversion frequency (94.6 %). Synseeds could be stored up to 10 weeks at low temperature (4 °C). Complete plantlets were successfully acclimatized and established in field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

DDW:

Double distilled water

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

2-iP:

2-Isopentyl adenine

Kn:

Kinetin

KNO3 :

Potassium nitrate

MS:

Murashige and Skoog (1962)

NAA:

α-Naphthalene acetic acid

PGR:

Plant growth regulator

TDZ:

Thidiazuron

References

  • Adriani M, Piccioni E, Standardi A (2000) Effect of different treatments on conversion of ‘Hayward’ kiwifruit synthetic seeds to whole plants following encapsulation of in vitro-derived buds. N Z J Crop Hortic Sci 28:59–67

    Article  Google Scholar 

  • Ali A, Gull I, Majid A, Saleem A, Naz S, Naveed NH (2012) In vitro conservation and production of vigorous and desiccate tolerant synthetic seeds in Stevia rebaudiana. J Med Plants Res 6:1327–1333

    CAS  Google Scholar 

  • Anand Y, Bansal YK (2002) Synthetic seeds: a novel approach of in vitro plantlet formation in vasaka (Adhatoda vascia Nees.). Plant Biotechnol J 19:159–162

    Article  CAS  Google Scholar 

  • Arikat NA, Jawad FM, Karam NS, Shibli RA (2004) Micropropagation and accumulation of essential oils in wild sage (Salvia fruticosa Mill.). Sci Hortic 100:193–202

    Article  CAS  Google Scholar 

  • Arun Kumar MB, Vakeswaran V, Krishnasamy V (2005) Enhancement of synthetic seed conversion to seedlings in hybrid rice. Plant Cell Tiss Org Cult 81:97–100

    Article  Google Scholar 

  • Bueno M, Sapio OD, Barolo M, Villalonga EM, Busilacchi H, Severin C (2010) In vitro response of different Salvia hispanica L. (Lamiaceae) explants. Mol Med Chem 21:125–126

    Google Scholar 

  • Cangahuala-Inocente GC, Vesco LLD, Steinmacher D, Torres AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in feijoa (Acca sellowiana (Berg) Burret): induction, conversion and synthetic seeds. Sci Hortic 111:228–234

    Article  CAS  Google Scholar 

  • Carpenter WJ (1989) Salvia splendens seed pregermination and priming for rapid and uniform plant emergence. J Am Soc Hortic Sci 114:247–250

    Google Scholar 

  • Cuenca S, Amo-Marco JB (2000) In vitro propagation of two Spanish endemic species of salvia through bud proliferation. In Vitro Cell Dev Biol Plant 36:225–229

    Article  CAS  Google Scholar 

  • Danso KE, Ford-Lloyd BV (2003) Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm. Plant Cell Rep 21:718–725

    CAS  Google Scholar 

  • Echeverrigaray S, Carrer RP, Andrade LB (2010) Micropropagation of Salvia guaranitica Benth. through axillary shoot proliferation. Braz Arch Biol Technol 53:883–888

    Article  CAS  Google Scholar 

  • Edward FG, Teresa H (1999) Salvia splendens. Institute of Food and Agriculture Sciences, University of Florida, Florida, p 528

    Google Scholar 

  • Frett JJ (1986) Tissue culture propagation of Salvia greggii. HortScience 21:859

    Google Scholar 

  • Grzegorczyk I, Wysokińska H (2008) Liquid shoot culture of Salvia officinalis L. for micropropagation and production of antioxidant compound; effect of triaconatanol. Acta Soc Bot Pol 77:99–104

    Article  CAS  Google Scholar 

  • Hung CD, Trueman SJ (2012a) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant 34:117–128

    Article  CAS  Google Scholar 

  • Hung CD, Trueman SJ (2012b) Preservation of encapsulated shoot tips and nodes of the tropical hardwoods Corymbia torelliana × C. citriodora and Khaya senegalensis. Plant Cell Tiss Org Cult 109:341–352

    Article  Google Scholar 

  • Irina G (2008) Effect of different plant hormones on Salvia officinalis cultivated in vitro. Int J Bot 4:430–436

    Article  CAS  Google Scholar 

  • Khan FZ, Saeed MA (1998) Phytochemical and antimicrobial studies of Salvia splendens Sello. Pak J Pharma Sci 11:13–21

    CAS  Google Scholar 

  • Liu H, Zhang G, Shen G, Ruan S, Fu Q (2011) Callus induction and plant regeneration from mature seeds of Salvia splendens. Int J Agric Biol 14:445–469

    Google Scholar 

  • Lowell CE (1997) Salvia splendens-scarlet sage. Flower seed trials: Michigan state trials. Michigan State University, Michigan

    Google Scholar 

  • Mahesh Kumar P, Sasmal D, Mazumder PM (2010) The anti-hyperglycemic effect of aerial parts of Salvia splendens (scarlet sage) in streptozotocin-induced diabetic-rats. Pharmacognosy Res 2:190–194

    Article  Google Scholar 

  • Makunga NP, van Staden J (2008) An efficient system for the production of clonal plantlets of the medicinally important aromatic plant: Salvia africana-lutea L. Plant Cell Tiss Org Cult 92:63–72

    Article  Google Scholar 

  • Mederos-Molina S (2006) Micropropagation of Salvia broussonetii Benth.-a medicinal plant species. Plant Tiss Cult Biotechnol 16:19–23

    Google Scholar 

  • Mišić D, Ghalawenji NA, Grubišić D, Konjević R (2005) Micropropagation and reintroduction of Nepeta rtanjensis Diklić & Milojević, an endemic and critically endangered perennial of Serbia. Phyton 45:9–20

    Google Scholar 

  • Mišič D, Grubišić D, Konjević R (2006) Micropropagation of Salvia brachyodon through nodal explants. Biol Plant 50:473–476

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:474–497

    Google Scholar 

  • Onishi N, Sakamoto Y, Hirosawa T (1994) Synthetic seeds as an application of mass production of somatic embryos. Plant Cell Tiss Org Cult 39:137–145

    Article  Google Scholar 

  • Pavela R (2004) Insecticidal activity of certain medicinal plants. Fitoterapia 75:745–749

    Article  Google Scholar 

  • Qureshi IH, Ahmad S, Kapadia Z (1989) Toxicity and anticoagulant activity of Salvia splendens. Pak J Pharma Sci 2:75–79

    CAS  Google Scholar 

  • Redenbaugh K, Slade D, Vissa P, Fujii J (1987) Encapsulation of somatic embryos in synthetic seed coats. HortScience 22:803–809

    Google Scholar 

  • Rout GR, Mohapatra A, Mohan Jain S (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24:531–560

    Article  CAS  Google Scholar 

  • Sanchez-Gras MC, Calvo MC (1996) Micropropagation of Lavandula latifolia through nodal bud culture of mature plants. Plant Cell Tiss Org Cult 45:259–261

    Article  CAS  Google Scholar 

  • Sharma S, Shahzad A (2012) Encapsulation technology for short-term storage and conservation of a woody climber, Decalepis hamiltonii Wight and Arn. Plant Cell Tiss Org Cult 11:191–198

    Article  Google Scholar 

  • Sharma S, Shahzad A, Jan N, Sahai A (2009a) In vitro studies on shoot regeneration through various explants and alginate-encapsulated nodal segments of Spilanthes mauritiana DC., an endangered medicinal herb. Int J Plant Dev Biol 3:56–61

    Google Scholar 

  • Sharma S, Shahzad A, Sahai A (2009b) Artificial seeds for propagation and preservation of Spilanthes acmella (L.) Murr., a threatened pesticidal plant species. Int J Plant Dev Biol 3:62–64

    Google Scholar 

  • Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207

    Article  CAS  Google Scholar 

  • Singh NK, Sehgal CB (1999) Micropropagation of ‘Holy Basil’ (Ocimum sanctum Linn.) from young inflorescences of mature plants. Plant Growth Regul 29:161–166

    Article  CAS  Google Scholar 

  • Skała E, Wysokińska H (2004) In vitro regeneration of Salvia nemorosa L. from shoot tips and leaf explants. In Vitro Cell Dev Biol Plant 40:596–602

    Article  Google Scholar 

  • Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following six months of storage. Plant Cell Tiss Org Cult 99:193–198

    Article  CAS  Google Scholar 

  • Standardi A, Micheli M (2013) Encapsulation of in vitro-derived explants: an innovative tool for nurseries. Methods Mol Biol 11013:397–418

    Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766

    Article  CAS  Google Scholar 

  • Taha RM, Hasbullah NA, Awal A (2009) Production of synthetic seeds from micro shoots and somatic embryos of Gerbera jamesonii Bolus ex Hook f. Acta Hortic 829:91–98

    Google Scholar 

  • Tawfik AA, Read PE, Cuppett SL (1992) Stimulation of growth and monoterpene production of sage (Salvia officinalis) by benzyladenine in vitro. Plant Growth Reg Soc Am 20:200–206

    CAS  Google Scholar 

  • Teixeira da Silva JA (2012) Production of synseed for hybrid Cymbidium using protocorm-like bodies. J Fruit Ornam Plant Res 20:135–146

    Google Scholar 

Download references

Acknowledgments

Dr. Shiwali Sharma is thankful to DST, for the award of Young Scientist under Fast Track Scheme, SERB (vide no. SB/FT/LS-364/2012) for providing research assistance. Dr. Anwar Shahzad gratefully acknowledges the financial support provided by UGC and UP-CST in the form of research projects (vide No. 39-369/2010 SR and vide No. CST/D3836).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiwali Sharma or Anwar Shahzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Shahzad, A., Kumar, J. et al. In vitro propagation and synseed production of scarlet salvia (Salvia splendens). Rend. Fis. Acc. Lincei 25, 359–368 (2014). https://doi.org/10.1007/s12210-014-0308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-014-0308-y

Keywords

Navigation