Skip to main content
Log in

Improved side weir discharge coefficient modeling by adaptive neuro-fuzzy methodology

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this article, the accuracy of a soft computing technique is evaluated in terms of discharge coefficient prediction of an improved triangular side weir. The process includes simulating the discharge coefficient with the Adaptive Neuro-Fuzzy Inference System (ANFIS). Matlab software is used for ANFIS modeling. To identify the most appropriate input variables, eight different input combinations with various numbers of inputs are examined. The performance of the proposed system is confirmed by comparing the ANFIS and experimental results for the testing dataset. The performance evaluation demonstrates that the ANFIS model with five inputs (Root Mean Square Error (RMSE) of 0.014) is more accurate than the ANFIS model with one input (RMSE = 0.088). The ANFIS model results are also compared with the results obtained from previous regression and soft computing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aydin, M. C. and Emiroglu, M. E. (2013). “Determination of capacity of labyrinth side weir by CFD.” Flow. Meas. Instrum., Vol. 29, No. 2013, pp. 1–8, DOI: 10.1016/j.flowmeasinst.2012.09.008.

    Article  Google Scholar 

  • Bilhan, O., Emiroglu, M. E., and Kisi, O. (2010). “Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel.” Adv. Eng. Software, Vol. 41, No. 6, pp. 831–837, DOI: 10.1016/j.advengsoft.2010.03.001.

    Article  MATH  Google Scholar 

  • Bilhan, O., Emiroglu, M. E., and Kisi, O. (2011). “Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels.” Adv. Eng. Software, Vol. 42, No. 4, pp. 208–214, DOI: 10.1016/j.advengsoft.2011.02.006.

    Article  MATH  Google Scholar 

  • Borghei, S. M. and Parvaneh, A. (2011). “Discharge characteristics of a modified oblique side weir in subcritical flow.” Flow. Meas. Instrum., Vol. 22, No. 5, pp. 370–376, DOI: 10.1016/j.flowmeasinst.2011.04.009.

    Article  Google Scholar 

  • Cosar, A. and Agaccioglu, H. (2004). “Discharge coefficient of a triangular side-weir located on a curved channel.” J. Irrig. Drain. Eng., Vol. 130, No. 5, pp. 410–423, DOI: 10.1061/(ASCE)0733-9437(2004)130:5(410).

    Article  Google Scholar 

  • Dastorani, M. T., Afkhami, H., Sharifidarani, H., and Dastorani, M. (2010). “Application of ANN and ANFIS models on dryland precipitation prediction (case study: Yazd in central Iran).” J. Appl. Sci., Vol. 10, No. 20, pp. 2387–2394, DOI: 10.3923/jas.2010.2387.2394.

    Article  Google Scholar 

  • De Marchi, G. (1934). “Saggio di teoria del funzionamento degli stramazzi laterali.” L’Energia Elettrica, Vol. 11, No. 11, pp. 849–860.

    Google Scholar 

  • Dursun, O. F., Kaya, N., and Firat, M. (2012). “Estimating discharge coefficient of semi-elliptical side weir using ANFIS.” J. Hydrol., Vols. 426–427, No. 2012, pp. 55–62, DOI: 10.1016/j.jhydrol.2012.01.010.

    Article  Google Scholar 

  • Ebtehaj, I. and Bonakdari, H. (2014). “Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers.” Water. Resour. Manage., Vol. 28, No. 13, pp. 4765–4779, DOI: 10.1007/s11269-014-0774-0.

    Article  Google Scholar 

  • El-Shafie, A., Jaafer, O., and Seyed, A. (2011). “Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia.” Int. J. Phys. Sci., Vol. 6, No. 12, pp. 2875–2888.

    Google Scholar 

  • Emiroglu, M. E. and Kisi, O. (2013). “Prediction of discharge coefficient for trapezoidal labyrinth side weir using a neuro-fuzzy approach.” Water. Resour. Manage., Vol. 27, No. 5, pp. 1473–1488, DOI: 10.1007/s11269-012-0249-0.

    Article  Google Scholar 

  • Emiroglu, M. E., Kisi, O., and Bilhan, O. (2010). “Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique.” Adv. Eng. Software, Vol. 41, No. 2, pp. 154–160, DOI: 0.1016/j.advengsoft. 2009.09.006.

    Article  MATH  Google Scholar 

  • Ghodsian, M. (2003). “Supercritical flow over a rectangular side weir.” Can. J. Civ. Eng., Vol. 30, No. 3, pp. 596–600, DOI: 10.1139/L03-004.

    Article  Google Scholar 

  • Ghodsian, M. (2004). “Flow over triangular side weir.” Sci. Iranica, Vol. 11, Nos. 1-2, pp. 114-120.

    Google Scholar 

  • Jang, J. S. R. (1993). “ANFIS: Adaptive-network-based fuzzy inference system.” IEEE Trans. Syst. Man. Cybern., Vol. 23, No. 3, pp. 665–685, DOI: 10.1109/21.256541.

    Article  Google Scholar 

  • Khajeh, A., Modarress, H., and Rezaee, B. (2009). “Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers.” Expert. Sys. Appl., Vol. 36, No. 3 PART 1, pp. 5728–5732, DOI: 10.1016/j.eswa.2008.06.051.

    Article  Google Scholar 

  • Kisi, O., Bilhan, O., and Emiroglu, M. E. (2013). “Anfis to estimate discharge capacity of rectangular side weir.” Proc. Inst. Civ. Eng. Water Manage., Vol. 166, No. 9, pp. 479–487, DOI: 10.1680/ wama.11.00095.

    Article  Google Scholar 

  • Kisi, O., Emin Emiroglu, M., Bilhan, O., and Guven, A. (2012). “Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches.” Expert. Sys. Appl., Vol. 39, No. 3, pp. 3454–3460, DOI: 10.1016/j.eswa.2011.09.035.

    Article  Google Scholar 

  • Kumar, C. P. and Pathak, S. K. (1987). “Triangular side weirs.” J. Irrig. Drain. Eng., Vol. 113, No. 1, pp. 98–105, DOI: 10.1061/(ASCE) 0733-9437(1987)113:1(98).

    Article  Google Scholar 

  • Mirnaseri, M. and Emadi, A. (2013). “Hydraulic performance of combined flow rectangular labyrinth weir-gate.” Middle. East. J. Sci. Res., Vol. 18, No. 9, pp. 1335–1342, DOI: 10.5829/idosi.mejsr. 2013.18.9.12374.

    Google Scholar 

  • Muslu, Y. (2001). “Numerical analysis of lateral weir flow.” J. Irrig. Drain. Eng., Vol. 127, No. 4, pp. 246–253, DOI: 10.1061/(ASCE) 0733-9437(2001)127:4(246).

    Article  Google Scholar 

  • Muslu, Y., Tozluk, H., and Yuksel, E. (2003). “Effect of lateral water surface profile on side weir discharge.” J. Irrig. Drain. Eng., Vol. 129, No. 5, pp. 371–375, DOI: 10.1061/(ASCE)0733-9437(2003) 129:5(371).

    Article  Google Scholar 

  • Nadesamoorthy, T. and Thomson, A. (1972). “Discussion of “Spatially Varied Flow over Side-Weirs”.” J. Hydraul. Div., Vol. 98, No. 12, pp. 2234–2235.

    Google Scholar 

  • Onen, F. (2014a). “GEP prediction of scour around a side weir in curved channel.” J. Environ Eng. Landsc. Manage., Vol. 22, No. 3, pp. 161–170, DOI: 10.3846/16486897.2013.865632.

    Article  Google Scholar 

  • Onen, F. (2014b). “Prediction of scour at a side-weir with GEP, ANN and Regression Models.” Arab. J. Sci. Eng., Vol. 39, No. 8, pp. 6031–6041, DOI: 10.1007/s13369-014-1244-y.

    Article  Google Scholar 

  • Petković, D. and Ćojbašić, Z. (2011). “Adaptive neuro-fuzzy estimation of automatic nervous system parameters effect on heart rate variability.” Neural. Comput. Appl., Vol. 21, No. 8, pp. 2065–2070. DOI: 10.1007/s00521-011-0629-z.

    Article  Google Scholar 

  • Petković, D., Ćojbašić, Ž., and Lukić, S. (2013a). “Adaptive neuro fuzzy selection of heart rate variability parameters affected by autonomic nervous system.” Expert. Sys. Appl., Vol. 40, No. 11, pp. 4490–4495, DOI: 10.1016/j.eswa.2013.01.055.

    Article  Google Scholar 

  • Petković, D., Issa, M., Pavlović, N. D., Pavlović, N. T., and Zentner, L. (2012). “Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties.” Expert. Sys. Appl., Vol. 39, No. 10, pp. 9477–9482, DOI: 10.1016/j.eswa.2012.02.111.

    Article  Google Scholar 

  • Petković, D., Pavlović, N. D., Ćojbašić, Ž., and Pavlović, N. T. (2013b). “Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces.” Expert. Sys. Appl., Vol. 40, No. 1, pp. 281–286, DOI: 10.1016/j.eswa.2012.07.076.

    Article  Google Scholar 

  • Ranga Raju, K. G., Prasad, B., and Gupta, S. K. (1979). “Side weir in rectangular channel.” J. Hydraul. Div., Vol. 105, No. 5, pp. 547–554.

    Google Scholar 

  • Seyedian, S. M., Ghazizadeh, M. J., and Tareghian, R. (2014). “Determining side-weir discharge coefficient using Anfis.” Proc. Inst. Civ. Eng. Water Manage., Vol. 167, No. 4, pp. 230–237, DOI: 10.1680/wama. 12.00102.

    Article  Google Scholar 

  • Singh, R., Manivannan, D., and Satyanarayana, T. (1994). “Discharge coefficients of rectangular side weirs.” J. Irrig Drain. Eng., Vol. 120, No. 4, pp. 814–819, DOI: 10.1061/(ASCE)0733-9437(1996)122:2(132).

    Article  Google Scholar 

  • Swamee, P. K., Pathak, S. K., and Ali, M. S. (1994). “Side weir analysis using elementary discharge coefficient.” J. Irrig. Drain. Eng., Vol. 120, No. 4, pp. 742–755, DOI: 10.1061/(ASCE)0733-9437(1994)120:4 (742).

    Article  Google Scholar 

  • Talei, A., Chua, L. H. C., and Quek, C. (2010). “A novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling.” Expert. Sys. Appl., Vol. 37, No. 12, pp. 7456–7468, DOI: 10.1016/j.eswa.2010.04.015.

    Article  Google Scholar 

  • Wahida Banu, R. S. D., Shakila Banu, A., and Manoj, D. (2011). “Identification and control of nonlinear systems using soft computing techniques.” Int. J. Model. Optimiz., Vol. 1, No. 1, pp. 24–28, DOI: 10.7763/IJMO.2011.V1.5.

    Google Scholar 

  • Wu, C. L. and Chau, K. W. (2012). “Prediction of rainfall time series using modular soft computing methods.” Eng. Appl. Artif. Intell., Vol. 26, No. 3, pp. 997–1007, DOI: 10.1016/j.engappai.2012.05.

    Article  Google Scholar 

  • Yuksel, E. (2004). “Effect of specific energy variation on lateral overflows.” Flow Meas Instrum, Vol. 15, Nos. 5-6, pp. 259–269, DOI: 10.1016/ j.flowmeasinst.2004.06.005.

    Article  Google Scholar 

  • Zaji, A. H. and Bonakdari, H. (2014). “Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs.” Flow. Meas. Instrum., Vol. 40, pp. 149–156, DOI: 10.1016/ j.flowmeasinst.2014.10.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bonakdari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamshirband, S., Bonakdari, H., Zaji, A.H. et al. Improved side weir discharge coefficient modeling by adaptive neuro-fuzzy methodology. KSCE J Civ Eng 20, 2999–3005 (2016). https://doi.org/10.1007/s12205-016-1723-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-1723-7

Keywords

Navigation