Skip to main content
Log in

Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Heart rate signal can be used as certain indicator of heart disease. Spectral analysis of heart rate variability (HRV) signal makes it possible to partly separate the low-frequency (LF) sympathetic component, from the high-frequency (HF) vagal component of autonomic cardiac control. Here, we used two important features to characterize the nonlinear fluctuations in the heart variability signal (HRV): cardiac vagal index (CVI) and cardiac sympathetic index (CSI) which indicates vagal and sympathetic function separately. This article presents a methodology for analyzing the influence of CVI and CSI on heart rate variability spectral patterns—low-frequency (LF) and high-frequency (HF) spectral bands and LF/HF ratio. An adaptive neuro-fuzzy network is used to approximate correlation between these two features and spectral patterns. This system is capable to find any change in ratio of features and spectral patterns of heart rate variability signal (HRV) and thus indicates state of both parasympathetic and sympathetic functions in newly diagnosed patients with heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhong Y, Wang H, Ju KH, Jan KM, Chon KH (2004) Nonlinear analysis of the separate contributions of autonomic nervous systems to heart rate variability using principal dynamic modes. IEEE Trans Biomed Eng 51:255–262

    Article  Google Scholar 

  2. Pan J, Tompkins JW (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32:230–255

    Article  Google Scholar 

  3. Malik M (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Article  Google Scholar 

  4. Berntson GG, Bigger JT et al (1997) Heart rate variability: origins, methods, and interpretative caveats. Psychophysiology 34:623–648

    Article  Google Scholar 

  5. Pincus MS (1991) Approximate entropy as a measure of system complexity. Proc Nat Acad Sci 88:2297–2301

    Article  MathSciNet  MATH  Google Scholar 

  6. Xinbao N, Chunhua B, Jun W, Ying C (2006) Research progress in nonlinear analysis of heart electric activities. Chin Sci Bull 51:385–393

    Article  Google Scholar 

  7. Chunhua B, Xinbao N (2004) Nonlinearity degree of short-term heart rate variability signal. Chin Sci Bull 49:530–534

    Google Scholar 

  8. Mourot L, Bouhaddi M, Perrey S et al (2004) Quantitative Poincare plot analysis of heart rate variability: effect of endurance training. Eur J Appl Physiol 91:79–87

    Article  Google Scholar 

  9. Lerma C, Infante I, Groves HP, Jose MV (2003) Poincare plot indexes of heart rate variability capture dynamic adaptations after haemodialysis in chronic renal failure patients. Clin Physiol Func Im 23:72–80

    Article  Google Scholar 

  10. Addio GD, Pinna GD, Rovere MTL, Maestri R et al (2001) Prognostic value of Poincare plot indexes in chronic heart failure patients. Comput Cardiol 28:57–60

    Google Scholar 

  11. Chiu HW, Wang TH, Huang LC et al (2003) The influence of mean heart rate on measures of heart rate variability as markers of autonomic function: a model study. Med Eng Phys 25:475–481

    Article  Google Scholar 

  12. Basano L, Canepa F, Ottonello P (1998) Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system. Comput Methods Programs Biomed 55:69–76

    Article  Google Scholar 

  13. Wu GQ, Arzeno MN, Shen LL et al (2009) Chaotic signatures of heart rate variability and its power spectrum in health, aging and heart failure. PLoS One Public Library Sci 4:2

    Google Scholar 

  14. Busek P, Vankova J, Opavsky J et al (2005) Spectral analysis of heart rate variability in sleep. Physiol Res 54:369–376

    Google Scholar 

  15. Groome JL, Mooney MD, Bentz SL, Singh PK (1994) Spectral analysis of heart rate variability during quiet slep in normal human fetuses between 36 and 40 weeks of gestation. Early Hum Dev 38:1–10

    Article  Google Scholar 

  16. Colak HO (2009) Preprocessing effects in time-frequency distributions and spectral analysis of heart rate variability. Dig Sig Proc 19:731–739

    Article  Google Scholar 

  17. Khandoker AH, Jelinek HF, Moritani T, Palaniswami M (2010) Association of cardiac autonomic neuropathy with alteration of sympatho-vagal balance through heart rate variability analysis. Med Eng Phys 32:161–167

    Article  Google Scholar 

  18. Toichi M, Sugiura T, Murai T, Sengoku A (1997) A new method of assessing cardiac autonomic function and its comparision with spectral analysis and coefficient of variation of R-R interval. J Aut Nerv Syst 62:79–84

    Article  Google Scholar 

  19. Lin CW, Wang JS, Chung PC (2010) Mining physiological conditions from heart rate variability analysis. IEEE Comput Intell Mag 5:50–58

    Google Scholar 

  20. Apfelbaum JD, Caravati EM, Kerns WP, Bossart PJ, Larsen G (1995) Cardiovascular effects of carbamazepine toxicity. Ann Emerg Med 25:631–635

    Article  Google Scholar 

  21. Meneses ASJ, Moreira HG, Daher MT (2004) Analysis of heart rate variability in hypertensive patients before and after treatment with angiotensin II-converting enzyme inhibitors. Arquivos Brasileros de Cardiologia 83:169–172

    Google Scholar 

  22. Lado MJ, Vila XA, Rodrigez LL, Mendez AJ, Olivieri DN, Felix P (2009) Detecting sleep apnea by heart rate variability analysis: assessing the validity of databases and algorithms. J Med Syst 33:1–9

    Google Scholar 

  23. Persson H, Ericson M, Tomson T (2007) Heart rate variability in patients with untreated epilepsy. Seizure 16:504–508

    Article  Google Scholar 

  24. Hallioglu O, Ocuyaz C, Mert E, Makharoblidze K (2008) Effects of antiepileptic drug therapy on heart rate variability in children with epilepsy. Epilepsy Res 79:49–54

    Article  Google Scholar 

  25. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  26. Yardimci A (2009) Soft computing in medicine. Appl Soft Comput 9:1029–1043

    Article  Google Scholar 

  27. Ubeyli ED (2009) Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Comput Method Prog Biomed 93:313–321

    Article  Google Scholar 

  28. Nazmy TM, El-Messiry H, Al-Bokhity B (2009) Adaptive neuro-fuzzy inference system for classification of ECG signals. J Theor Appl Inform Tech 12:71–76

    Google Scholar 

  29. Rajendra UA, Subbanna PB, Iyengar SS, Rao A, Dua S (2003) Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recogn 36:61–68

    Article  MATH  Google Scholar 

  30. Ubeyli ED (2010) Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Exp Syst Appl 37:1192–1199

    Article  Google Scholar 

  31. Maglaveres N, Stamkopolulos T, Diamantaras K, Pappas C, Strintzis M (1998) ECG pattern recognition and classification using non-linear transformations and neural networks: a review. Int J Med Inform 52:191–208

    Article  Google Scholar 

  32. Ozbay Y, Tezel G (2009) A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digi Sig Proc 20:1040–1049

    Google Scholar 

  33. Hosseini HG, Luo D, Reynolds KJ (2006) The comparision of different feed forward neural network architectures for ECG signal diagnosis. Med Eng Phys 28:372–378

    Article  Google Scholar 

  34. Ceylan R, Ozbay Y, Karlik B (2009) A novel approach for classification of ECG arrhythmias: type-2 fuzzy clustering neural network. Exp Syst Appl 36:6721–6726

    Article  Google Scholar 

  35. Osowski S, Markiewicz T, Hoai LT (2009) Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement 41:610–617

    Article  Google Scholar 

  36. Anuradha MB, Reddy VCV (2009) Cardiac arrhythmia classification using fuzzy classifiers. J Theor Appl Inform Tech 4:353–359

    Google Scholar 

  37. Mohammadzadeh-Asl B, Setarehdan SK (2006) Neural network based arrhythmia classification using heart rate variability signal. In: 14th European signal processing conference

  38. Patil SB, Kumaraswamy YS (2009) Intelligent and effective heart attack prediction system using data mining and artificial neural network. Eur J Sci Res 31:642–656

    Google Scholar 

  39. Annuradha B, Reddy VCV (2008) ANN for classification of cardiac arrhythmias. ARPN J Engin Appl Sci 3:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Petković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petković, D., Ćojbašić, Ž. Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability. Neural Comput & Applic 21, 2065–2070 (2012). https://doi.org/10.1007/s00521-011-0629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-011-0629-z

Keywords

Navigation