Skip to main content
Log in

Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Multi-mode fiber (MMF) links are expected to greatly enhance capacity to cope with rapidly increasing data traffic in optical short-reach systems and networks. Recently, mode division multiplexing (MDM) over MMF has been proposed, in which different modes in MMF are utilized as spatial channels for data transmission. Strongly-coupled MDM techniques utilizing coherent detection and multiplex-input-multiplex-output (MIMO) digital signal processing (DSP) are complex and expensive for short-reach transmission. So the weakly-coupled approach by significantly suppressing mode coupling in the fiber and optical components has been proposed. In this way, the signals in each mode can be independently transmitted and received using conventional intensity modulation and direct detection (IM-DD). In this paper, we elaborate the key technologies to realize weakly-coupled MDM transmission over conventional MMF, including mode characteristic in MMF and weakly-coupled mode multiplexer/demultiplexer (MUX/DEMUX). We also present the up-to-date experimental results for weakly-coupled MDM transmission over conventional OM3 MMF. We show that weakly-coupled MDM scheme is promising for high-speed optical interconnections and bandwidth upgrade of already-deployed MMF links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olshansky R. Mode coupling effects in graded-index optical fibers. Applied Optics, 1975, 14(4): 935–945

    Article  Google Scholar 

  2. IEEE 802.3 Standard for Ethernet, section 4, https://doi.org/standards.ieee.org/about/get/802/802.3.html

  3. Freund R E, Bunge C A, Ledentsov N N, Molin D, Caspar Ch. High-speed transmission in multimode fibers. Journal of Lightwave Technology, 2010, 28(4): 569–586

    Article  Google Scholar 

  4. Sun Y, Hallemeier P, Ereifej H, Sinkin O V, Marks B S, Menyuk C R. Statistics of electrical dispersion compensator penalties of 10-Gb/s multimode fibre links with offset connectors. IEEE Photonics Technology Letters, 2007, 19(9): 689–691

    Article  Google Scholar 

  5. Tan Z, Yang C, Zhu Y, Xu Z, Zou K, Zhang F, Wang Z. High speed band-limited 850-nm VCSEL link based on time-domain interference elimination. IEEE Photonics Technology Letters, 2017, 29 (9): 751–754

    Article  Google Scholar 

  6. Shen X, Kahn J M, Horowitz M A. Compensation for multimode fiber dispersion by adaptive optics. Optics Letters, 2005, 30(22): 2985–2987

    Article  Google Scholar 

  7. Geng L, Lee S H, William K A, Penty R V, White I H, Cunningham D G. Symmetrical 2-D Hermite-Gaussian square launch for high bit rate transmission in multimode fiber links. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWJ5

    Book  Google Scholar 

  8. Sim D H, Takushima Y, Chung Y C. High speed multimode fiber transmission by using mode-field matched center-launching technique. Journal of Lightwave Technology, 2009, 27(8): 1018–1026

    Article  Google Scholar 

  9. Ma L, Hanzawa N, Tsujikawa K, Azuma Y. Launch device using endlessly single-mode PCF for ultra-wideband WDM transmission in graded-index multi-mode fiber. Optics Express, 2012, 20(22): 24903–24909

    Article  Google Scholar 

  10. Kocot C, Motaghiannezam S M R, Tatarczak A, Hallstein S, Lyubomirsky I, Askarov D, Daghighian H, Nelson S, Tatum J A. SWDM strategies to extend performance of VCSELs over MMF. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Tu2G.1

    Book  Google Scholar 

  11. Gasulla I, Capmany J. 1 Tb/s$km multimode fiber link combining WDM transmission and low-linewidth lasers. Optics Express, 2008, 16(11): 8033–8038

    Article  Google Scholar 

  12. Stuart H R. Dispersive multiplexing in multimode optical fiber. Science, 2000, 289(5477): 281–283

    Article  Google Scholar 

  13. Li G, Bai N, Zhao N, Xia C. Space-division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics, 2014, 6(4): 413–487

    Article  Google Scholar 

  14. Ryf R, Fontaine N K, Chen H, Guan B, Huang B, Esmaeelpour M, Gnauck A H, Randel S, Yoo S J B, Koonen A M J, Shubochkin R, Sun Y, Lingle R Jr. 23 Tbit/s transmission over 17-km conventional 50-μm graded-index multimode fiber. In: Proceedings of Optical Fiber Communication Conference. San Francisco: Optical Society of America, 2014, paper Th5B.1

    Book  Google Scholar 

  15. Franz B, Bülow H. Experimental evaluation of principal mode groups as high-speed transmission channels in spatial multiplex systems. IEEE Photonics Technology Letters, 2012, 24(16): 1363–1365

    Article  Google Scholar 

  16. Chen H S, van den Boom P A, Koonen A M J. 30 Gbit/s 33optical mode group division multiplexing system with modeselective spatial filtering. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWB1

    Google Scholar 

  17. Lenglé K, Insou X, Jian P, Barré N, Denolle B, Bramerie L, Labroille G. 40 Gbit/s bidirectional transmission over 2 km of conventional graded-index OM1 multimode fiber using mode group division multiplexing. Optics Express, 2016, 24(25): 28594–28605

    Article  Google Scholar 

  18. Stepniak G, Maksymiuk L, Siuzdak J. Binary-phase spatial light filters for mode-selective excitation of multimode fibers. Journal of Lightwave Technology, 2011, 29(13): 1980–1987

    Article  Google Scholar 

  19. Leuthold J, Hess R, Eckner J, Besse P A, Melchior H. Spatial mode filters realized with multimode interference couplers. Optics Letters, 1996, 21(11): 836–838

    Article  Google Scholar 

  20. Chen W, Wang P, Yang J. Optical mode interleaver based on asymmetric multimode Y junction. IEEE Photonics Technology Letters, 2014, 26(20): 2043–2046

    Article  Google Scholar 

  21. Kubota H, Takara H, Morioka T. T-shaped mode coupler for twomode mode division multiplexing. IEICE Electronics Express, 2011, 8(22): 1927–1932

    Article  Google Scholar 

  22. Labroille G, Denolle B, Jian P, Genevaux P, Treps N, Morizur J F. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Optics Express, 2014, 22(13): 15599–15607

    Article  Google Scholar 

  23. Al Amin A, Li A, Chen S, Chen X, Gao G, Shieh W. Dual-LP11 mode MIMO-OFDM transmission over a two-mode fiber. Optics Express, 2011, 19(17): 16672–16679

    Article  Google Scholar 

  24. Hanzawa N, Saitoh K, Sakamoto T, Matsui T, Tomita S, Koshiba M. Demonstration of mode-division multiplexing transmission over 10 km twomode fiber with mode coupler. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles: Optical Society of America, 2011, paper OWA4

    Google Scholar 

  25. Lenon-Saval S G, Fontaine N K, Salazar-Gil J R, Ercan B, Ryf R, Bland-Hawthorn J. Mode-selective photonic lanterns for space division multiplexing. Optics Express, 2014, 22(1): 1036–1044

    Article  Google Scholar 

  26. Huang B, Fontaine N K, Ryf R, Guan B, Leon-Saval S G, Shubochkin R, Sun Y, Lingle R Jr, Li G. All-fiber mode-groupselective photonic lantern using graded-index multimode fibers. Optics Express, 2015, 23(1): 224–234

    Article  Google Scholar 

  27. Chang S H, Chung H S, Ryf R, Fontaine N K, Han C, Park K J, Kim K, Lee J C, Lee J H, Kim B Y, Kim Y K. Mode-and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers. Optics Express, 2015, 23(6): 7164–7172

    Article  Google Scholar 

  28. Igarashi K, Park K J, Soma D, Wakayama Y, Tsuritani T, Kim B Y. All-fiber-based selective mode multiplexer and demultiplexer for six-mode multiplexed signals. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper W2A.38

    Book  Google Scholar 

  29. Ismaeel R, Lee T, Oduro B, Jung Y, Brambilla G. All-fiber fused directional coupler for highly efficient spatial mode conversion. Optics Express, 2014, 22(10): 11610–11619

    Article  Google Scholar 

  30. Ren F, Li J, Hu T, Tang R, Yu J, Mo Q, He Y, Chen Z, Li Z. Cascaded mode-division-multiplexing and time-division-multiplexing passive optical network based on low mode-crosstalk FMF and mode MUX/DEMUX. IEEE Photonics Journal, 2015, 7(5): 7903059

    Article  Google Scholar 

  31. Wu Z, Li J, Tian Y, Ge D, Zhu J, Mo Q, Ren F, Yu J, Li Z, Chen Z, He Y. 4-mode MDM transmission over MMF with direct detection enabled by cascaded mode-selective couplers. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: Optical Society of America, 2017, paper Th2A.40

    Book  Google Scholar 

  32. Li A, Chen X, Amin A A, Ye J, Shieh W. Space-division multiplexed high-speed superchannel transmission over few-mode fiber. Journal of Lightwave Technology, 2012, 30(24): 3953–3964

    Article  Google Scholar 

  33. Yaman F, Bai N, Zhu B, Wang T, Li G. Long distance transmission in few-mode fibers. Optics Express, 2010, 18(12): 13250–13257

    Article  Google Scholar 

  34. Ho K P, Kahn J M. Linear propagation effects in mode-division multiplexing systems. Journal of Lightwave Technology, 2014, 32 (4): 614–628

    Article  Google Scholar 

  35. Sillard P. Few-mode fibers for space division multiplexing. In: Proceedings of Optical Fiber Communication Conference. Anaheim: Optical Society of America, 2016, paper Th1J.1

    Book  Google Scholar 

  36. Wu Z, Li J, Ge D, Ren F, Zhu P, Mo Q, Li Z, Chen Z, He Y. Demonstration of all-optical MDM/WDM switching for short-reach networks. Optics Express, 2016, 24(19): 21609–21618

    Article  Google Scholar 

  37. Tian Y, Li J, Wu Z, Chen Y, Zhu P, Tang R, Mo Q, He Y, Chen Z. Wavelength-interleaved MDM-WDM transmission over weakly-coupled FMF. Optics Express, 2017, 25(14): 16603–16617

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 61771024, 61627814, 61505002, 61690194 and 61605004), and Fundamental Research Project of Shenzhen Science and Technology Foundation (Nos. JCYJ 20170412153729436 and 20170307172513653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhao Li.

Additional information

Dr. Juhao Li received the B.S. and Ph.D. degrees from Department of Electronics Engineering, Peking University, China in 1999 and 2009, respectively. During 1999–2000, he had been engaged in ZTE Corporation. In 2009 he worked in the State Key Laboratory of Advanced Optical Communication Systems & Networks at Peking University, firstly as a Postdoctoral Research Scientist, as a Lecturer from 2011, as an Associate Professor from 2012. His current research interests include high-speed optical fiber transmission systems and networks, design of optical fibers and components for optical communication, optical spatial division multiplexing techniques. He authored more than 140 papers, including about 60 SCI papers and more 25 OFC conference papers. He holds 4 authorized and 15 pending patents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, Z., Ge, D. et al. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection. Front. Optoelectron. 12, 31–40 (2019). https://doi.org/10.1007/s12200-018-0834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-018-0834-9

Keywords

Navigation