Skip to main content
Log in

Bifurcation analysis in a predator–prey system with a functional response increasing in both predator and prey densities

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a qualitative study of a predator–prey interaction system with the functional response proposed by Cosner et al. (Theor Popul Biol 56:65–75, 1999). The response describes a behavioral mechanism which a group of predators foraging in linear formation searches, contacts and then hunts a school of prey. On account of the response, strong Allee effects are induced in predators. In the system, we determine the existence of all feasible nonnegative equilibria; further, we investigate the stabilities and types of the equilibria. We observe the bistability and paradoxical phenomena induced by the behavior of a parameter. Moreover, we mathematically prove that the saddle-node, Hopf and Bogdanov–Takens types of bifurcations can take place at some positive equilibrium. We also provide numerical simulations to support the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso, D.M., Paolini, E.E., Moiola, J.L.: Bifurcation theory in mechanical systems. Mecánica Computacional 21, 1232–1247 (2002)

    Google Scholar 

  2. Alves, M.T., Hilker, F.M.: Hunting cooperation and Allee effects in predators. J. Theor. Biol. 419, 13–22 (2017)

    Article  MathSciNet  Google Scholar 

  3. Arditi, R., Ginzburg, L.R., Akcakaya, H.R.: Variation in plankton densities among lakes: a case for ratio-dependent models. Am. Nat. 138, 1287–1296 (1991)

    Article  Google Scholar 

  4. Ascher, U., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  Google Scholar 

  5. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  6. Berec, I.: Impacts of foraging facilitation among predators on predator-prey dynamics. Bull. Math. Biol. 72, 94–121 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chen, J., Huang, J., Ruan, S., Wang, J.: Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting. SIAM J. Appl. Math. 73, 1876–1905 (2013)

    Article  MathSciNet  Google Scholar 

  8. Cheng, K.S., Hsu, S.B., Lin, S.S.: Some results on global stability of a predator-prey system. J. Math. Biol. 12, 115–126 (1981)

    Article  MathSciNet  Google Scholar 

  9. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    Article  Google Scholar 

  10. Cantrell, R.S., Cosner, C.: On the dynamics of predator-prey models with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 257, 206–222 (2001)

    Article  MathSciNet  Google Scholar 

  11. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  12. Freedman, H.I., Wolkowicz, G.S.K.: Predator-prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 48, 493–508 (1986)

    Article  MathSciNet  Google Scholar 

  13. Gao, Y., Li, B.: Dynamics of a ratio-dependent predator-prey system with a strong allee effect. Discrete Contin. Dyn. Syst. Ser. B 18, 2283–2313 (2013)

    Article  MathSciNet  Google Scholar 

  14. Haque, M.: A detailed study of the Beddington-DeAngelis predator-prey model. Math. Biosci. 234, 1–16 (2011)

    Article  MathSciNet  Google Scholar 

  15. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)

    Article  Google Scholar 

  16. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 46, 1–60 (1995)

    Google Scholar 

  17. Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator-prey model with constant yield predator harvesting. Discrete Contin. Dyn. Syst. Ser. B 18, 2101–2121 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kuznetsov, Y.A.: Elements of applied bifurcation theory, Applied Mathematical Sciences, vol. 112. Springer, New York, (1995)

    Book  Google Scholar 

  19. Liu, X., Wang, C.: Bifurcation of a predator-prey model with disease in the prey. Nonlinear Dyn. 62, 841–850 (2010)

    Article  MathSciNet  Google Scholar 

  20. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  Google Scholar 

  21. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)

    Article  Google Scholar 

  22. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)

    Article  MathSciNet  Google Scholar 

  23. Sakellaridis, N.G., Karystianos, M.E., Vournas, C.D.: Homoclinic loop and degenerate Hopf bifurcations introduced by load dynamics. IEEE Trans. Power Syst. 24, 1892–1893 (2009)

    Article  Google Scholar 

  24. Serajian, R.: Parameters’ changing influence with different lateral stiffnesses on nonlinear analysis of hunting behavior of a bogie. J. Meas. Eng. 1, 195–206 (2013)

    Google Scholar 

  25. Voorn, G.A.K., Hemerik, L., Boer, M.P., Kooi, B.W.: Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Math. Biosci. 209, 451–469 (2007)

    Article  MathSciNet  Google Scholar 

  26. Xiao, D., Jennings, L.S.: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2005)

    Article  MathSciNet  Google Scholar 

  27. Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system. J. Math. Biol. 43, 268–290 (2001)

    Article  MathSciNet  Google Scholar 

  28. Xiao, D., Ruan, S.: Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506 (1999)

    MathSciNet  MATH  Google Scholar 

  29. Xiao, D., Ruan, S.: Codimension two bifurcations in a predator-prey system with group defense. Int. J. Bifurcat. Chaos Appl. Sci. Eng. 11, 2123–2131 (2001)

    Article  MathSciNet  Google Scholar 

  30. Younesian, D., Jafari, A.A., Serajian, R.: Effects of the bogie and body inertia on the nonlinear wheel-set hunting recognized by the Hopf bifurcation theory. Int. J. Automot. Eng. 3(1), 186–196 (2011)

    Google Scholar 

  31. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative theory of differential equations, Translations of Mathematical Monographs, vol. 101, American Mathematical Society, Providence, RI (1992)

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT [NRF-2017R1A2B1011902 to W. Ko]. The authors would like to thank anonymous reviewers for their constructive comments and suggestions which helped to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonlyul Ko.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in publishing this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, K., Ko, W. & Haque, M. Bifurcation analysis in a predator–prey system with a functional response increasing in both predator and prey densities. Nonlinear Dyn 94, 1639–1656 (2018). https://doi.org/10.1007/s11071-018-4446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4446-0

Keywords

Mathematics Subject Classification

Navigation