Skip to main content
Log in

Extracellular vesicles and blood diseases

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are small membrane vesicles released from many different cell types by the exocytic budding of the plasma membrane in response to cellular activation or apoptosis. EVs disseminate various bioactive effectors originating from the parent cells and transfer functional RNA and protein between cells, enabling them to alter vascular function and induce biological responses involved in vascular homeostasis. Although most EVs in human blood originate from platelets, EVs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells. EVs were initially thought to be small particles with procoagulant activity; however, they can also evoke cellular responses in the immediate microenvironments and transport microRNAs (miRNA) into target cells. In this review, we summarize the recent literature relevant to EVs, including a growing list of clinical disorders that are associated with elevated EV levels. These studies suggest that EVs play roles in various blood diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings. Thromb Res. 2008;123:8–23.

    Article  CAS  PubMed  Google Scholar 

  2. Nomura S, Shimizu M. Clinical significance of procoagulant microparticles. J Intensive Care. 2015;3:2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nomura S. Microparticle and atherothrombotic diseases. J Atherscler Thromb. 2016;23:1–9.

    Article  CAS  Google Scholar 

  4. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13:269–88.

    Article  CAS  PubMed  Google Scholar 

  5. Warren BA, Vales O. The release of vesicles from platelets following adhesion to vessel walls in vitro. Br J Exp Pathol. 1972;53:206–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 2008;7:5157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bastos-Amador P, Pérez-Cabezas B, Izquierdo-Useros N, Puertas MC, Martinez-Picado J, Pujol-Borrell R, et al. Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. J Leukoc Biol. 2012;91:751–8.

    Article  CAS  PubMed  Google Scholar 

  8. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183:1161–72.

    Article  CAS  PubMed  Google Scholar 

  9. Ratajezak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20:847–56.

    Article  CAS  Google Scholar 

  10. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ciardiello C, Cavallini L, Spinelli C, Yang J, Reis-Sobreiro M, de Candia P, et al. Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int J Mol Sci. 2016;17:175–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581–93.

    Article  CAS  PubMed  Google Scholar 

  13. Raposo G, Stoovogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  PubMed  Google Scholar 

  15. Nolte-’t Hoen E, Cremer T, Gallo RC, Margolis LB. Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci USA. 2016;113:9155–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis. Cir Res. 2012;110:356–69.

    Article  CAS  Google Scholar 

  17. Nomura S, Niki M, Nishizawa T, Tamaki T, Shimizu M. Microparticles as biomarkers of blood coagulation in cancer. Biomak Cancer. 2015;7:51–6.

    Article  Google Scholar 

  18. Matsumoto N, Nomura S, Kamihata H, Kimura Y, Iwasaka T. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb Haemost. 2004;91:146–54.

    CAS  PubMed  Google Scholar 

  19. Simak J, Gelderman MP, Yu H, Wright V, Baird AE. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost. 2006;4:1296–302.

    Article  CAS  PubMed  Google Scholar 

  20. Ederhy S, Di Angelantonio E, Mallat Z, Hugel B, Janower S, Meuleman C, et al. Levels of circulating procoagulant microparticles in nonvalvular atrial fibrillation. Am J Cardiol. 2007;100:989–94.

    Article  CAS  PubMed  Google Scholar 

  21. Kim HK, Song KS, Chung JH, Lee KR, Lee SN. Platelet microparticles induce angiogenesis in vitro. Br J Haematol. 2004;124:376–84.

    Article  PubMed  Google Scholar 

  22. Wang JG, Geddings JE, Aleman MM, Cardenas JC, Chantrathammachart P, Williams JC, et al. Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood. 2012;119:5543–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang ME, Leonard JN. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J Extra Vesicles. 2016;5:31027.

    Article  Google Scholar 

  24. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci. 2016;17:171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Alberro A, Sáenz-Cuesta M, Muñoz-Culla M, Mateo-Abad M, Gonzalez E, Carrasco-Garcia E, et al. Inflammaging and frailty status do not result in an increased extracellular vesicle concentration in circulation. Int J Mol Sci. 2016;17:1168.

    Article  PubMed Central  Google Scholar 

  26. Abid Hussein MN, Meesters EW, Osmanovic N, Romijn FP, Nieuwland R, Sturk A. Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo. J Thromb Haemost. 2003;1:2434–43.

    Article  CAS  PubMed  Google Scholar 

  27. Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. The platelet microparticle proteome. J Proteome Res. 2005;4:1516–21.

    Article  CAS  PubMed  Google Scholar 

  28. Smalley DM, Root KE, Cho H, Ross MM, Ley K. Proteomic discovery of 21 proteins expressed in human plasma-derived but not platelet-derived microparticles. Thromb Haemost. 2007;97:67–80.

    CAS  PubMed  Google Scholar 

  29. Alvarez-Erviti, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  PubMed  Google Scholar 

  30. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-synternin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14:677–85.

    Article  CAS  PubMed  Google Scholar 

  31. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteom. 2010;73:1907–20.

    Article  CAS  Google Scholar 

  32. György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68:2667–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Muhsin-Sharafaldine MR, Saunderson SC, Dunn AC, Faed JM, Kleffmann, McLellan AD. Procoagulant and immunogenic properties of melanoma exosomes, microvesicles and apoptotic vesicles. Oncotarget (in press).

  34. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14:195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colombo M, Moita C, van Niel G, Kowai J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–65.

    Article  CAS  PubMed  Google Scholar 

  36. Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 2010;464:864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jayachandran M, Miller VM, Heit JA, Owen WG. Mathodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods. 2012;375:207–14.

    Article  CAS  PubMed  Google Scholar 

  38. Lynch SF, Ludlam CA. Plasma microparticles and vascular disorders. Br J Haematol. 2007;137:36–48.

    CAS  PubMed  Google Scholar 

  39. Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Med Med. 2009;13:454–71.

    Article  CAS  Google Scholar 

  40. Gasser O, Hess C, Miot S, Deon C, Sanchez JC, Schifferti JA. Characterisation and properties of ectosomes released by human polymorphoneclear neutrophils. Exp Cell Res. 2003;285:243–57.

    Article  CAS  PubMed  Google Scholar 

  41. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19:1875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li B, Antonyak MA, Zhang J, Cerione RA. Rho A triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene. 2012;31:4740–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaplan ZS, Jackson SP. The role of platelets in atherothrombosis. Hematol Am Soc Hematol Educ Program. 2011;2011:51–61.

    Google Scholar 

  44. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013;113:1–11.

    Article  PubMed  Google Scholar 

  45. Black LV, Saunderson SC, Coutinho FP, Muhsin-Sharafaldine MR, Damani TT, Dunn AC, et al. The CD169 sialoadhesin molecule mediates cytotoxic T-cell responses to tumour apoptotic vesicles. Immunol Cell Biol. 2015;94:430–8.

    Article  PubMed  CAS  Google Scholar 

  46. Thery C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166:7309–18.

    Article  CAS  PubMed  Google Scholar 

  47. Bilyy RO, Shkandina T, Tomin A, Muñoz LE, Franz S, Antonyuk V. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles. J Biol Chem. 2012;287:496–503.

    Article  CAS  PubMed  Google Scholar 

  48. Leventis PA, Grinstein S. The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys. 2010;39:407–27.

    Article  CAS  PubMed  Google Scholar 

  49. Hristov M, Erl W, Linder S, Weber PC. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood. 2004;104:2761–6.

    Article  CAS  PubMed  Google Scholar 

  50. Turiak L, Misjak P, Szabo TG, Aradi B, Paloczi K, Ozohanics O, et al. Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/C mice. J Proteom. 2011;74:2025–33.

    Article  CAS  Google Scholar 

  51. Di Vizio D, Kim J, Hager MH, Morello M, Yang W, Lafargue CJ, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009;69:5601–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, et al. Large oncosome in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181:1573–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria PJ, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget. 2015;6:11327–41.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Berckmans RJ, Nieuwland R, Boing AN, Romijn FP, Hack CE, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost. 2001;85:639–46.

    CAS  PubMed  Google Scholar 

  55. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost. 2007;97:425–34.

    CAS  PubMed  Google Scholar 

  56. Wolberg AS, Monroe DM, Roberts HR, Hoffman MR. Tissue factor de-encryption: ionophore treatment induces changes in tissue factor activity by phosphatidylserine-dependent and -independent mechanisms. Blood Coagul Fibrinolysis. 1999;10:201–10.

    Article  CAS  PubMed  Google Scholar 

  57. Khan MM, Hattori T, Niewiarowski S, Edmunds LHJr, Colman RW. Truncated and microparticle-free soluble tissue factor bound to peripheral monocytes preferentially activated factor VII. Thromb Haemost. 2006;95:462–8.

    CAS  PubMed  Google Scholar 

  58. Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, Kambayashi J. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis. 2001;158:277–87.

    Article  CAS  PubMed  Google Scholar 

  59. Barry OP, Praticò D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998;102:136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mallat Z, Hugel B, Ohan J, Lesèche G, Freyssinet JM, Tedgui A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation. 1999;99:348–53.

    Article  CAS  PubMed  Google Scholar 

  61. Kagawa H, Komiyama Y, Nakamura S, Miyake T, Miyazaki Y, Hamamoto K, et al. Expression of functional tissue factor on small vesicles of lipopolysaccharide-stimulated human vascular endothelial cells. Thromb Res. 1998;91:297–304.

    Article  CAS  PubMed  Google Scholar 

  62. Combes V, Simon AC, Grau GE, Arnoux D, Camoin L, Sabatier F, et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest. 1999;104:93–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nomura S, Shouzu A, Omoto S, Nishikawa M, Iwasaka T, Fukuhara S. Activated platelets and oxidized LDL induce endothelial membrane vesiculation: clinical significance of endothelial cell-derived microparticles in patients with type 2 diabetes. Clin Appl Thromb Hemost. 2004;10:205–15.

    Article  CAS  PubMed  Google Scholar 

  64. Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med. 2003;197:1585–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor- bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106:1604–11.

    Article  PubMed  CAS  Google Scholar 

  66. Steppich B, Mattisek C, Sobczyk D, Kastrati A, Schömig A, Ott I. Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thromb Haemost. 2005;93:35–9.

    CAS  PubMed  Google Scholar 

  67. Perez-Casal M, Downey C, Fukudome K, Marx G, Toh CH. Activated protein C induces the release of microparticle-associated endothelial protein C receptor. Blood. 2005;105:1515–22.

    Article  CAS  PubMed  Google Scholar 

  68. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

    Article  PubMed  Google Scholar 

  69. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Clayton A, Turkes A, Dewitt S, Steadman R, Mason MD, Hallett MB. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004;18:977–9.

    CAS  PubMed  Google Scholar 

  71. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10:619–24.

    Article  CAS  PubMed  Google Scholar 

  72. Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71:3792–801.

    Article  CAS  PubMed  Google Scholar 

  73. Zeelenberg IS, van Maren WW, Boissonnas A, Van Hout-Kuijer MA, Den Brok MH, Wagenaars JA, et al. Antigen localization controls T cell-mediated tumor immunity. J Immunol. 2011;187:1281–8.

    Article  CAS  PubMed  Google Scholar 

  74. Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 2013;22:772–80.

    Article  CAS  PubMed  Google Scholar 

  75. Borges FT, Reis LA, Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res. 2013;46:824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010;38:215–24.

    Article  CAS  PubMed  Google Scholar 

  77. Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9:4997–5000.

    Article  CAS  PubMed  Google Scholar 

  78. Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol. 2003;19:397–422.

    Article  CAS  PubMed  Google Scholar 

  79. Tian T, Wang Y, Wang H, Zhu Z, Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem. 2010;111:488–96.

    Article  CAS  PubMed  Google Scholar 

  80. Kosaka N, Yoshioka Y, Hagiwara K, Tominaga N, Katsuda T, Ochiya T. Trash or Treasure: extracellular microRNAs and cell-to-cell communication. Front Genet. 2013;4:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ostenfeld MS, Jeppesen DK, Laurberg JR, Boysen AT, Bramsen JB, Primdal-Bengtson B. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res. 2014;74:5758–71.

    Article  CAS  PubMed  Google Scholar 

  82. Nomura S, Yanabu M, Kido H, Fukuroi T, Yamaguchi K, Soga T, et al. Antiplatelet autoantibody-related microparticles in patients with idiopathic (autoimmune) thrombocytopenic purpura. Ann Hematol. 1991;62:103–7.

    Article  CAS  PubMed  Google Scholar 

  83. Jy W, Horstmann LL, Arce M, Ahn YS. Clinical significance of platelet microparticles in autoimmune thrombocytopenias. J Lab Clin Med. 1992;119:334–45.

    CAS  PubMed  Google Scholar 

  84. Ahn YS, Horstman LL. Idiopathic thrombocytopenic purpura: pathophysiology and management. Int J Hematol. 2002;76(Suppl):123–31.

    Article  PubMed  Google Scholar 

  85. Fontana V, Jy W, Ahn ER, Dudkiewicz P, Horstman LL, Ducan R, et al. Increased procoagulant cell-derived microparticles (C-MP) in splenectomized patients with ITP. Thromb Res. 2008;122:599–603.

    Article  CAS  PubMed  Google Scholar 

  86. Sewify EM, Sayed D, Abdel Aal RF, Ahmad HM, Abdou MA. Increased circulating red cell microparticles (RMP) and platelet microparticles (PMP) in immune thrombocytopenic purpura. Thromb Res. 2013;131:e59–63.

    Article  CAS  PubMed  Google Scholar 

  87. Alvarez Román MT, Fernández Bello I, Arias-Salgado EG, Rivas Pollmar MI, Jiménez Yuste V, Martín Salces M, et al. Effects of thrombopoietin receptor agonists on procoagulant state in patients with immune thrombocytopenia. Thromb Haemost. 2014;112:65–72.

    Article  PubMed  CAS  Google Scholar 

  88. Frelinger AL 3rd, Grace RF, Gerrits AJ, Berny-Lang MA, Brown T, Carmichael SL, et al. Platelet function tests, independent of platelet count, are associated with bleeding severity in ITP. Blood. 2015;126:873–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tantawy AA, Matter RM, Hamed AA, Shams El Din El Telbany MA. Platelet microparticles in immune thrombocytopenic purpura in pediatrics. Pediatr Hematol Oncol. 2010;27:283–96.

    Article  PubMed  Google Scholar 

  90. Ichijo M, Ishibashi S, Ohkubo T, Nomura S, Sanjo N, Yokota T, et al. Elevated platelet microparticle levels after acute ischemic stroke with concurrent idiopathic thrombocytopenic purpura. J Stroke Cerebrovasc Dis. 2014;23:587–9.

    Article  PubMed  Google Scholar 

  91. Naghama M, Nomura S, Ozaki Y, Yoshimura C, Kagawa H, Fukuhara S. Platelet activation markers and soluble adhesion molecules in patients with systemic lupus erythematosus. Autoimmunity. 2001;33:85–94.

    Article  Google Scholar 

  92. Pereira J, Alfaro G, Goycoolea M, Quiroga T, Ocqueteau M, Massardo L, et al. Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state. Thromb Haemost. 2006;95:94–9.

    CAS  PubMed  Google Scholar 

  93. Nomura S, Yanabu M, Fukuroi T, Kido H, Kawakatsu T, Yamaguchi K, et al. Anti-phospholipid antibodies bind to platelet microparticles in idiopathic (autoimmune) thrombocytopenic purpura. Ann Hematol. 1992;65:46–9.

    Article  CAS  PubMed  Google Scholar 

  94. Nagahama M, Nomura S, Kanazawa S, Ozaki Y, Kagawa H, Fukuhara S. Significance of anti-oxidized LDL antibody and monocyte-derived microparticles in anti-phospholipid antibody syndrome. Autoimmunity. 2003;36:125–31.

    Article  CAS  PubMed  Google Scholar 

  95. Dignat-George F, Camoin-Jau L, Sabatier F, Arnoux D, Anfosso F, Bardin N, et al. Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thromb Haemost. 2004;91:667–73.

    CAS  PubMed  Google Scholar 

  96. Vikerfors A, Mobarrez F, Bremme K, Holmström M, Ågren A, Eelde A, et al. Studies of microparticles in patients with the antiphospholipid syndrome (APS). Lupus. 2012;21:802–5.

    Article  CAS  PubMed  Google Scholar 

  97. Willemze R, Bradford RL, Mooberry MJ, Roubey RA, Key NS. Plasma microparticle tissue factor activity in patients with antiphospholipid antibodies with and without clinical complications. Thromb Res. 2014;133:187–9.

    Article  CAS  PubMed  Google Scholar 

  98. Breen KA, Sanchez K, Kirkman N, Seed PT, Parmar K, Moore GW, et al. Endothelial and platelet microparticles in patients with antiphospholipid antibodies. Thromb Res. 2015;135:368–74.

    Article  CAS  PubMed  Google Scholar 

  99. Martínez-Zamora MA, Tàssies D, Creus M, Reverter JC, Puerto B, Monteagudo J, et al. Higher levels of procoagulant microparticles in women with recurrent miscarriage are not associated with antiphospholipid antibodies. Hum Reprod. 2016;31:46–52.

    Article  PubMed  Google Scholar 

  100. Galli M, Grassi A, Barbui T. Platelet-derived microparticles in thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Thromb Haemost. 1996;75:427–31.

    CAS  PubMed  Google Scholar 

  101. Jimenez JJ, Jy W, Mauro LM, Horstman LL, Ahn YS. Elevated endothelial microparticles in thrombotic thrombocytopenic purpura: findings from brain and renal microvascular cell culture and patients with active disease. Br J Haematol. 2001;112:81–90.

    Article  CAS  PubMed  Google Scholar 

  102. Karpman D, Ståhl AL, Arvidsson I, Johansson K, Loos S, Tati R, et al. Complement interactions with blood cells, endothelial cells and microvesicles in thrombotic and inflammatory conditions. Adv Exp Med Biol. 2015;865:19–42.

    Article  PubMed  Google Scholar 

  103. Arepally GM, Ortel TL. Clinical practice. Heparin-induced thrombocytopenia. N Engl J Med. 2006;355:809–17.

    Article  CAS  PubMed  Google Scholar 

  104. Warkentin TE, Levine MN, Hirsh J, Horsewood P, Roberts RS, Gent M, et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med. 1995;332:1330–5.

    Article  CAS  PubMed  Google Scholar 

  105. Hughes M, Hayward CP, Warkentin TE, Horsewood P, Chorneyko KA, Kelton JG. Morphological analysis of microparticle generation in heparin-induced thrombocytopenia. Blood. 2000;96:188–94.

    CAS  PubMed  Google Scholar 

  106. Kasthuri RS, Glover SL, Jonas W, McEachron T, Pawlinski R, Arepally GM, et al. PF4/heparin-antibody complex induces monocyte tissue factor expression and release of tissue factor positive microparticles by activation of FcγRI. Blood. 2012;119:5285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mullier F, Minet V, Bailly N, Devalet B, Douxfils J, Chatelain C, et al. Platelet microparticle generation assay: a valuable test for immune heparin-induced thrombocytopenia diagnosis. Thromb Res. 2014;133:1068–73.

    Article  CAS  PubMed  Google Scholar 

  108. Levi M, Ten Cate H. Disseminated intravascular coagulations. N Eng J Med. 1999;341:586–92.

    Article  CAS  Google Scholar 

  109. Reid VL, Webster NR. Role of microparticles in sepsis. Br J Anaesth. 2012;109:503–13.

    Article  CAS  PubMed  Google Scholar 

  110. Hatada T, Wada H, Nobori T, Okabayashi K, Maruyama K, Abe Y, et al. Plasma concentrations and importance of high mobility group box protein in the prognosis of organ failure in patients with disseminated intravascular coagulation. Thromb Haemost. 2005;94:975–9.

    CAS  PubMed  Google Scholar 

  111. Iba T, Thachil. Present and future of anticoagulant therapy using antithrombin and thrombomodulin for sepsis-associated disseminated intravascular coagulation: a perspective from Japan. Int J Hematol. 2016;103:253–61.

    Article  CAS  PubMed  Google Scholar 

  112. Nomura S, Fujita S, Ozasa R, Nakanishi T, Miyaji M, Mori S, et al. Correlation between platelet activation markers and HMGB1 in DIC patients with hematologic malignancy. Platelets. 2011;22:396–7.

    Article  CAS  PubMed  Google Scholar 

  113. Meziani F, Delabranche X, Asfar P, Toti F. Bench-to-bedside review: circulating microparticles—a new player in sepsis? Crit Care. 2010;14:236.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Delabrache X, Boisramé-Helms J, Asfar P, Berger A, Mootien Y, Lavigne T, et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensiv Care Med. 2013;39:1695–703.

    Article  CAS  Google Scholar 

  115. Hellum M, Øvstebø R, Brusletto BS, Berg JP, Brandtzaeg P, Henriksson CE. Microparticle-associated tissue factor activity correlates with plasma levels of bacterial lipopolysaccharides in meningococcal septic shock. Thromb Res. 2014;133:507–14.

    Article  CAS  PubMed  Google Scholar 

  116. Matsumoto H, Yamakawa K, Ogura H, Koh T, Matsumoto N, Shimazu T. Enhanced expression of cell-specific surface antigens on endothelial microparticles in sepsis-induced disseminated intravascular coagulation. Shock. 2015;43:443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Delabranche X, Stiel L, Severac F, Galoisy AC, Mauvieux L, Zobairi F, et al. Evidence of NETosis in septic shock-induced disseminated intravascular coagulation. Shock (in press).

  118. Parker C, Omine M, Richards S, Nishimura J, Bessler M, Ware R, et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood. 2005;1(106):3699–709.

    Article  CAS  Google Scholar 

  119. Ziakas PD, Poulou LS, Pomoni A. Thrombosis in paroxysmal nocturnal hemoglobinuria at a glance: a clinical review. Curr Vasc Pharmacol. 2008;6:347–53.

    Article  CAS  PubMed  Google Scholar 

  120. Wiedmer T, Hall SE, Ortel TL, Kane WH, Rosse WF, Sims PJ. Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood. 1993;82:1192–6.

    CAS  PubMed  Google Scholar 

  121. Liebman HA, Feinstein DI. Thrombosis in patients with paroxysmal noctural hemoglobinuria is associated with markedly elevated plasma levels of leukocyte-derived tissue factor. Thromb Res. 2003;111:235–8.

    Article  CAS  PubMed  Google Scholar 

  122. Simak J, Holada K, Risitano AM, Zivny JH, Young NS, Vostal JG. Elevated circulating endothelial membrane microparticles in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 2004;125:804–13.

    Article  PubMed  Google Scholar 

  123. Kozuma Y, Sawahata Y, Takei Y, Chiba S, Ninomiya H. Procoagulant properties of microparticles released from red blood cells in paroxysmal nocturnal haemoglobinuria. Br J Haematol. 2011;152:631–9.

    Article  PubMed  Google Scholar 

  124. Weitz IC, Razavi P, Rochanda L, Zwicker J, Furie B, Manly D, et al. Eculizumab therapy results in rapid and sustained decreases in markers of thrombin generation and inflammation in patients with PNH independent of its effects on hemolysis and microparticle formation. Thromb Res. 2012;130:361–8.

    Article  CAS  PubMed  Google Scholar 

  125. van Bijnen ST, Østerud B, Barteling W, Verbeek-Knobbe K, Willemsen M, van Heerde WL, et al. Alterations in markers of coagulation and fibrinolysis in patients with Paroxysmal Nocturnal Hemoglobinuria before and during treatment with eculizumab. Thromb Res. 2015;136:274–81.

    Article  PubMed  CAS  Google Scholar 

  126. Hron G, Kollars M, Weber H, Sagaster V, Quehenberger P, Eichinger S, et al. Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost. 2007;97:119–23.

    CAS  PubMed  Google Scholar 

  127. Tesselaar ME, Romijn FP, Van Der Linden IK, Prins FA, Bertina RM, Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? J Thromb Haemost. 2007;5:520–7.

    Article  CAS  PubMed  Google Scholar 

  128. Aharon A, Brenner B. Microparticles, thrombosis and cancer. Best Pract Res Clin Haematol. 2009;22:61–9.

    Article  CAS  PubMed  Google Scholar 

  129. Zwicker JI. Predictive value of tissue factor bearing microparticles in cancer associated thrombosis. Thromb Res. 2010;125:S89–91.

    Article  PubMed  Google Scholar 

  130. Rak J. Microparticles in cancer. Semin Thromb Hemost. 2010;36:888–906.

    Article  CAS  PubMed  Google Scholar 

  131. Kalinkovich A, Tavor S, Avigdor A, Kahn J, Brill A, Petit I, et al. Functional CXCR4-expressing microparticles and SDF-1 correlate with circulating acute myelogenous leukemia cells. Cancer Res. 2006;66:11013–20.

    Article  CAS  PubMed  Google Scholar 

  132. Mezouar S, Mege D, Darbousset R, Farge D, Debourdeau P, Dignat-George F, et al. Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin Oncol. 2014;41:346–58.

    Article  CAS  PubMed  Google Scholar 

  133. Kanazawa S, Nomura S, Kuwana M, Muramatsu M, Yamaguchi K, Fukuhara S. Monocyte-derived microparticles may be a sign of vascular complication in patients with lung cancer. Lung Cancer. 2003;39:145–9.

    Article  PubMed  Google Scholar 

  134. Tseng CC, Wang CC, Chang HC, Tsai TH, Chang LT, Huang KT, et al. Levels of circulating microparticles in lung cancer patients and possible prognostic value. Dis Markers. 2013;35:301–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wang CC, Tseng CC, Hsiao CC, Chang HC, Chang LT, Fang WF, et al. Circulating endothelial-derived activated microparticle: a useful biomarker for predicting one-year mortality in patients with advanced non-small cell lung cancer. Biomed Res Int. 2014;2014:173401.

    PubMed  PubMed Central  Google Scholar 

  136. Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res. 2012;93:633–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  138. Hannafon BN, Ding WQ. Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci. 2013;14:14240–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Lawrie CH. MicroRNAs in hematological malignancies. Blood Rev. 2013;27:143–54.

    Article  CAS  PubMed  Google Scholar 

  140. Gostterman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615–27.

    Article  Google Scholar 

  141. Ambudkar SV, Sauna ZE, Gottesman MM, Szakacs G. A novel way to spread drug resistance in tumor cells: functional intercellular transfer of P-glycoprotein (ABCB1). Trends Pharmacol Sci. 2005;26:385–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gillet JP, Efferth T, Remacle J. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta. 2007;1775:237–62.

    CAS  PubMed  Google Scholar 

  143. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    Article  CAS  PubMed  Google Scholar 

  144. Bebawy M, Combes V, Lee E, Jaiswal R, Gong J, Bonhoure A, et al. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia. 2009;23:1643–9.

    Article  CAS  PubMed  Google Scholar 

  145. Jaiswal R, Gong J, Sambasivam S, Combes V, Mathys JM, Davey R, et al. Microparticle-associated nucleic acids mediate trait dominance in cancer. FASEB J. 2012;26:420–9.

    Article  CAS  PubMed  Google Scholar 

  146. Jaiswal R, Luk F, Dalla PV, Grau GE, Bebawy M. Breast cancer-derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PLoS One. 2013;8:e61515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11:109–24.

    Article  CAS  PubMed  Google Scholar 

  148. de Souza PS, Cruz AL, Viola JP, Maia RC. Microparticles induce multifactorial resistance through oncogenic pathways independently of cancer cell type. Cancer Sci. 2015;106:60–8.

    Article  PubMed  CAS  Google Scholar 

  149. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322:1861–5.

    Article  CAS  PubMed  Google Scholar 

  150. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113:6215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ku GH, White RH, Chew HK, Harvey DJ, Zhou H, Wun T. Venous thromboembolism in patients with acute leukemia: incidence, risk factors, and effect on survival. Blood. 2009;113:3911–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Van Aalderen MC, Trappenburg MC, Van Schilfgaarde M, Molenaar PJ, Ten Cate H, Terpstra WE, et al. Procoagulant myeloblast-derived microparticles in AML patients: changes in numbers and thrombin generation potential during chemotherapy. J Thromb Haemost. 2011;9:223–6.

    Article  PubMed  CAS  Google Scholar 

  153. Tzoran I, Rebibo-Sabbah A, Brenner B, Aharon A. Disease dynamics in patients with acute myeloid leukemia: new biomarkers. Exp Hematol. 2015;43:936–43.

    Article  CAS  PubMed  Google Scholar 

  154. Huan J, Hornick NI, Shurtleff MJ, Skinner AM, Goloviznina NA, Roberts CT Jr, et al. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 2013;73:918–29.

    Article  CAS  PubMed  Google Scholar 

  155. Huan J, Hornick NI, Goloviznina NA, Kamimae-Lanning AN, David LL, Wilmarth PA, et al. Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes. Leukemia. 2015;29:2285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wojtuszkiewicz A, Schuurhuis GJ, Kessler FL, Piersma SR, Knol JC, Pham TV, et al. Exosomes secreted by apoptosis-resistant acute myeloid leukemia (AML) blasts harbor regulatory network proteins potentially involved in antagonism of apoptosis. Mol Cell Proteom. 2016;15:1281–98.

    Article  CAS  Google Scholar 

  157. Tzoran I, Rebibo-Sabbah A, Brenner B, Aharon A. PO-46—influence of extracellular vesicles derived from AML patients on stem cells and their microenvironment. Thromb Res. 2016;140(Suppl 1):S193.

    Article  PubMed  Google Scholar 

  158. Hornick NI, Huan J, Doron B, Goloviznina NA, Lapidus J, Chang BH, et al. Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci Rep. 2015;5:11295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lemaire M, Deleu S, De Bruyne E, Van Valckenborgh E, Menu E, Vanderkerken K. The microenvironment and molecular biology of the multiple myeloma tumor. Adv Cancer Res. 2011;110:19–42.

    Article  CAS  PubMed  Google Scholar 

  160. Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, et al. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget (in press).

  161. Wong TW, Kita H, Hanson CA, Walters DK, Arendt BK, Jelinek DF. Induction of malignant plasma cell proliferation by eosinophils. PLoS One. 2013;8:e70554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Furukawa Y, Kikuchi J. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma. Int J Hematol. 2016;104:104–281.

    Article  CAS  Google Scholar 

  163. Benameur T, Chappard D, Fioleau E, Andriantsitohaina R, Martinez MC, Clere N, et al. Plasma cells release membrane microparticles in a mouse model of multiple myeloma. Micron. 2013;54–55:75–81.

    Article  PubMed  CAS  Google Scholar 

  164. Arendt BK, Walters DK, Wu X, Tschumper RC, Jelinek DF. Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget. 2014;5:5686–99.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Harshman SW, Canella A, Ciarlariello PD, Agarwal K, Branson OE, Rocci A, et al. Proteomic characterization of circulating extracellular vesicles identifies novel serum myeloma associated markers. J Proteom. 2016;136:89–98.

    Article  CAS  Google Scholar 

  166. Wang J, De Veirman K, Faict S, Frassanito MA, Ribatti D, Vacca A, et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol. 2016;239:162–73.

    Article  CAS  PubMed  Google Scholar 

  167. Caligaris-Cappio F. Biology of chronic lymphocytic leukemia. Rev Clin Exp Hematol. 2000;4:5–21.

    Article  CAS  PubMed  Google Scholar 

  168. Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 2010;115:1755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rowley J. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    Article  CAS  PubMed  Google Scholar 

  170. Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, Meraviglia S, et al. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer. 2012;130:2033–43.

    Article  CAS  PubMed  Google Scholar 

  171. Mineo M, Garfield SH, Taverna S, Flugy A, De Leo G, Alessandro R, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 2012;15:33–45.

    Article  CAS  PubMed  Google Scholar 

  172. Nomura S, Inami N, Kanazawa S, Iwasaka T, Fukuhara S. Elevation of platelet activation markers and chemokines during peripheral blood stem cell harvest with G-CSF. Stem Cells. 2004;22:696–703.

    Article  CAS  PubMed  Google Scholar 

  173. Nomura S, Ishii K, Inami N, Kimura Y, Uoshima N, Urase F, et al. α4 integrin-positive microvesicles and SDF-1 in peripheral blood stem cell harvest. Bone Marrow Transplant. 2008;41:1071–2.

    Article  CAS  PubMed  Google Scholar 

  174. Baj-Kizyworzeka M, Majka M, Oratico D, Ratajczak J, Vilaire G, Kijowski J, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30:450–9.

    Article  Google Scholar 

  175. Nomura S, Kanazawa S, Inami N, Kamitsuji Y, Uoshima N, Ishida H, et al. Role of platelet-derived chemokines (RANTES and ENA-78) after stem cell transplantation. Transplant Immunol. 2006;15:247–53.

    Article  CAS  Google Scholar 

  176. Nomura S, Ishii K, Inami N, Uoshima N, Ishida H, Yoshihara T, et al. Role of soluble tumor necrosis factor-related apoptosis-inducing ligand concentration after stem cell transplantation. Transplant Immunol. 2007;18:115–21.

    Article  CAS  Google Scholar 

  177. Majka M, Kijowski J, Lesko E, Gozdzik J, Zupanska B, Ratajczak MZ. Evidence that platelet-derived microvesicles may transfer platelet-specific immunoreactive antigens to the surface of endothelial cells and CD34+ hematopoietic stem/progenitor cells—implication for the pathogenesis of immune thrombocytopenias. Folia Histochem Cytobiol. 2007;45:27–32.

    CAS  PubMed  Google Scholar 

  178. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, et al. Endothelial progenitor cell-derived microvesicles activate an angiogenic program in endothelial cells by an horizontal transfer of mRNA. Blood. 2007;110:2440–8.

    Article  CAS  PubMed  Google Scholar 

  179. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113:752–60.

    Article  CAS  PubMed  Google Scholar 

  180. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78:838–48.

    Article  CAS  PubMed  Google Scholar 

  181. Zou X, Zhang G, Cheng Z, Yin D, Du T, Ju G, et al. Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther. 2014;5:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Miura Y. Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hemarol. 2016;103:122–8.

    Article  CAS  Google Scholar 

  183. Burrello J, Monticone S, Gai C, Gomez Y, Kholia S, Camussi G. Stem cell-derived extracellular vesicles and immune-modulation. Front Cell Dev Biol. 2016;4:83.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Fischer S, Cornils K, Speiseder T, Badbaran A, Reimer R, Indenbirken D, et al. Indication of horizontal DNA gene transfer by extracellular vesicles. PLoS One. 2016;11:e0163665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Nomura S, Ishii K, Kanazawa S, Inami N, Uoshima N, Ishida H, et al. Significance of elevation in cell-derived microparticles after allogeneic stem cell transplantation: transient elevation of platelet-derived microparticles in TMA/TTP. Bone Marrow Transplant. 2005;36:921–2.

    Article  CAS  PubMed  Google Scholar 

  186. Nomura S, Ishii K, Inami N, Kimura Y, Uoshima N, Ishida H, et al. Evaluation of angiopoietin and cell-derived microparticles after stem cell transplantation. Biol Blood Marrow Transplant. 2008;14:766–74.

    Article  CAS  PubMed  Google Scholar 

  187. Morel O, Ohlmann P, Epailly E, Backouboula B, Zobairi F, Jesel L, et al. Endothelial cell activation contributes to the release of procoagulant microparticles during acute cardiac allograft rejection. J Heart Lung Transplant. 2008;27:38–45.

    Article  PubMed  Google Scholar 

  188. Meng Y, Kang S, Fishman DA. Lysophosphatidic acid stimulates fas ligand microvesicles release from ovarian cancer cells. Cancer Immunol Immunother. 2005;54:807–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by research Grants from the Japanese Ministry of Health, Labour and Welfare and the Japanese Ministry of Education, Science, Sports and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shosaku Nomura.

Ethics declarations

Conflict of interest

The author does not disclose any financial or personal relationships with other people or organizations that could inappropriately influence this work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and Grants or other funding.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, S. Extracellular vesicles and blood diseases. Int J Hematol 105, 392–405 (2017). https://doi.org/10.1007/s12185-017-2180-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2180-x

Keywords

Navigation