Skip to main content

Extracellular Vesicles and Vascular Inflammation

  • Chapter
  • First Online:
Extracellular Vesicles in Cardiovascular and Metabolic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1418))

  • 518 Accesses

Abstract

Vascular inflammation is the most common pathological feature in the pathogenesis of human disease. It is a complex immune process involved with many different types of cells including platelet, monocytes, macrophages, endothelial cells, and others. It is widely accepted that both innate and adaptive immune responses are important for the initiation and progression of vascular inflammation. The cell–cell interaction constitutes an important aspect of those immune responses in the vascular inflammation. Extracellular vesicles (EVs) are nanometer-sized double-layer lipid membrane vesicles released from most types of cells. They have been proved to play critical roles in intercellular communication in the occurrence and development of multisystem diseases. With the advancement of basal medical science, the biological roles of EVs in vascular inflammation have been clearer today. In this chapter, we will summarize the advance progress of extracellular vesicles in regulating vascular inflammation and its potential application in the clinical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guzik TJ, Touyz RM (2017) Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension 70(4):660–667

    Article  CAS  PubMed  Google Scholar 

  2. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S (2014) Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int 2014:406960, 1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kutuk O, Basaga H (2003) Inflammation meets oxidation: NF-kappaB as a mediator of initial lesion development in atherosclerosis. Trends Mol Med 9(12):549–557

    Article  CAS  PubMed  Google Scholar 

  4. Noonan DM, De Lerma BA, Vannini N, Mortara L, Albini A (2008) Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 27(1):31–40

    Article  PubMed  Google Scholar 

  5. Costa C, Incio J, Soares R (2007) Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10(3):149–166

    Article  PubMed  Google Scholar 

  6. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ohsuzu F (2004) The roles of cytokines, inflammation and immunity in vascular diseases. J Atheroscler Thromb 11(6):313–321

    Article  CAS  PubMed  Google Scholar 

  8. Xin P, Xu X, Deng C, Liu S, Wang Y, Zhou X, Ma H, Wei D, Sun S (2020) The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 80:106210

    Article  CAS  PubMed  Google Scholar 

  9. Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180(6):1044–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X, Li G (2020) The emerging role of ferroptosis in inflammation. Biomed Pharmacother 127:110108

    Article  CAS  PubMed  Google Scholar 

  11. Broz P, Pelegrín P, Shao F (2020) The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 20(3):143–157

    Article  CAS  PubMed  Google Scholar 

  12. Jiang F (2016) Autophagy in vascular endothelial cells. Clin Exp Pharmacol Physiol 43(11):1021–1028

    Article  CAS  PubMed  Google Scholar 

  13. van Horssen J, van Schaik P, Witte M (2019) Inflammation and mitochondrial dysfunction: a vicious circle in neurodegenerative disorders? Neurosci Lett 710:132931

    Article  PubMed  Google Scholar 

  14. Kruger-Genge A, Blocki A, Franke RP, Jung F (2019) Vascular endothelial cell biology: an update. Int J Mol Sci 20(18):4411

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sun HJ, Wu ZY, Nie XW, Bian JS (2019) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10:1568

    Article  CAS  PubMed  Google Scholar 

  16. Szekanecz Z, Koch AE (2004) Vascular endothelium and immune responses: implications for inflammation and angiogenesis. Rheum Dis Clin North Am 30(1):97–114

    Article  PubMed  Google Scholar 

  17. Springer TA (1990) Adhesion receptors of the immune system. Nature 346(6283):425–434

    Article  CAS  PubMed  Google Scholar 

  18. Lessey BA, Young SL (1997) Integrins and other cell adhesion molecules in endometrium and endometriosis. Semin Reprod Endocrinol 15(3):291–299

    Article  CAS  PubMed  Google Scholar 

  19. Wilkinson LS, Edwards JC, Poston RN, Haskard DO (1993) Expression of vascular cell adhesion molecule-1 in normal and inflamed synovium. Lab Invest 68(1):82–88

    CAS  PubMed  Google Scholar 

  20. Bui TM, Wiesolek HL, Sumagin R (2020) ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol 108(3):787–799

    Article  CAS  PubMed  Google Scholar 

  21. Reglero-Real N, Colom B, Bodkin JV, Nourshargh S (2016) Endothelial cell junctional adhesion molecules: role and regulation of expression in inflammation. Arterioscler Thromb Vasc Biol 36(10):2048–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dart AM, Kingwell BA (2001) Pulse pressure—a review of mechanisms and clinical relevance. J Am Coll Cardiol 37(4):975–984

    Article  CAS  PubMed  Google Scholar 

  23. Metz RP, Patterson JL, Wilson E (2012) Vascular smooth muscle cells: isolation, culture, and characterization. Methods Mol Biol 843:169–176

    Article  CAS  PubMed  Google Scholar 

  24. Sinha S, Iyer D, Granata A (2014) Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell Mol Life Sci 71(12):2271–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ponticos M, Smith BD (2014) Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. J Biomed Res 28(1):25–39

    Article  CAS  PubMed  Google Scholar 

  26. Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM (2018) Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 114(4):590–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alexander MR, Owens GK (2012) Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol 74:13–40

    Article  CAS  PubMed  Google Scholar 

  28. Ley K, Miller YI, Hedrick CC (2011) Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol 31(7):1506–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  PubMed  Google Scholar 

  30. Gleissner CA, Shaked I, Little KM, Ley K (2010) CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J Immunol 184(9):4810–4818

    Article  CAS  PubMed  Google Scholar 

  31. Gordon S, Plüddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262(1):36–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  CAS  PubMed  Google Scholar 

  33. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Libby P, Aikawa M, Schönbeck U (2000) Cholesterol and atherosclerosis. Biochim Biophys Acta 1529(1–3):299–309

    Article  CAS  PubMed  Google Scholar 

  35. Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851

    Article  CAS  PubMed  Google Scholar 

  36. Johnstone RM, Mathew A, Mason AB, Teng K (1991) Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol 147(1):27–36

    Article  CAS  PubMed  Google Scholar 

  37. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25(6):364–372

    Article  CAS  PubMed  Google Scholar 

  38. Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, Mulholland D, Rotinen M, Hager MH, Insabato L, Moses MA, Demichelis F, Lisanti MP, Wu H, Klagsbrun M, Bhowmick NA, Rubin MA, D'Souza-Schorey C, Freeman MR (2012) Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 181(5):1573–1584

    Article  PubMed  PubMed Central  Google Scholar 

  39. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

    Article  PubMed  Google Scholar 

  40. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8(19):4083–4099

    Article  CAS  PubMed  Google Scholar 

  41. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  42. Xu H, Ni YQ, Liu YS (2021) Mechanisms of action of MiRNAs and LncRNAs in extracellular vesicle in atherosclerosis. Front Cardiovasc Med 8:733985

    Article  PubMed  PubMed Central  Google Scholar 

  43. Muñoz ER, Caccese JB, Wilson BE, Shuler KT, Santos FV, Cabán CT, Jeka JJ, Langford D, Hudson MB (2021) Effects of purposeful soccer heading on circulating small extracellular vesicle concentration and cargo. J Sport Health Sci 10(2):122–130

    Article  PubMed  Google Scholar 

  44. Urbanelli L, Buratta S, Tancini B, Sagini K, Delo F, Porcellati S, Emiliani C (2019) The role of extracellular vesicles in viral infection and transmission. Vaccine 7(3):102

    Article  CAS  Google Scholar 

  45. Baron M, Boulanger CM, Staels B, Tailleux A (2012) Cell-derived microparticles in atherosclerosis: biomarkers and targets for pharmacological modulation? J Cell Mol Med 16(7):1365–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Amabile N, Cheng S, Renard JM, Larson MG, Ghorbani A, McCabe E, Griffin G, Guerin C, Ho JE, Shaw SY, Cohen KS, Vasan RS, Tedgui A, Boulanger CM, Wang TJ (2014) Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham heart study. Eur Heart J 35(42):2972–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, de Marchena E, Ahn YS (2003) High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 145(6):962–970

    Article  PubMed  Google Scholar 

  48. Wang Y, Liu J, Chen X, Sun H, Peng S, Kuang Y, Pi J, Zhuang T, Zhang L, Yu Z, Tomlinson B, Chan P, Chen Y, Zhang Y, Li Y (2019) Dysfunctional endothelial-derived microparticles promote inflammatory macrophage formation via NF-small ka, CyrillicB and IL-1beta signal pathways. J Cell Mol Med 23(1):476–486

    Article  CAS  PubMed  Google Scholar 

  49. Hosseinkhani B, Kuypers S, van den Akker NMS, Molin DGM, Michiels L (2018) Extracellular vesicles work as a functional inflammatory mediator between vascular endothelial cells and immune cells. Front Immunol 9:1789

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hosseinkhani B, van den Akker NMS, Molin DGM, Michiels L (2020) (Sub)populations of extracellular vesicles released by TNF-alpha -triggered human endothelial cells promote vascular inflammation and monocyte migration. J Extracell Vesicles 9(1):1801153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boyer MJ, Kimura Y, Akiyama T, Baggett AY, Preston KJ, Scalia R, Eguchi S, Rizzo V (2020) Endothelial cell-derived extracellular vesicles alter vascular smooth muscle cell phenotype through high-mobility group box proteins. J Extracell Vesicles 9(1):1781427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Migneault F, Dieude M, Turgeon J, Beillevaire D, Hardy MP, Brodeur A, Thibodeau N, Perreault C, Hebert MJ (2020) Apoptotic exosome-like vesicles regulate endothelial gene expression, inflammatory signaling, and function through the NF-kappaB signaling pathway. Sci Rep 10(1):12562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cavallari C, Dellepiane S, Fonsato V, Medica D, Marengo M, Migliori M, Quercia AD, Pitino A, Formica M, Panichi V, Maffei S, Biancone L, Gatti E, Tetta C, Camussi G, Cantaluppi V (2019) Online Hemodiafiltration inhibits inflammation-related endothelial dysfunction and vascular calcification of uremic patients modulating miR-223 expression in plasma extracellular vesicles. J Immunol 202(8):2372–2383

    Article  CAS  PubMed  Google Scholar 

  54. Alique M, Bodega G, Corchete E, Garcia-Menendez E, de Sequera P, Luque R, Rodriguez-Padron D, Marques M, Portoles J, Carracedo J, Ramirez R (2020) Microvesicles from indoxyl sulfate-treated endothelial cells induce vascular calcification in vitro. Comput Struct Biotechnol J 18:953–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. He S, Wu C, Xiao J, Li D, Sun Z, Li M (2018) Endothelial extracellular vesicles modulate the macrophage phenotype: potential implications in atherosclerosis. Scand J Immunol 87(4):e12648

    Article  CAS  PubMed  Google Scholar 

  56. Li L, Wang H, Zhang J, Chen X, Zhang Z, Li Q (2021a) Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Dis 7(1):235

    Article  CAS  Google Scholar 

  57. Wang J, Li J, Cheng C, Liu S (2020) Angiotensin-converting enzyme 2 augments the effects of endothelial progenitor cells-exosomes on vascular smooth muscle cell phenotype transition. Cell Tissue Res 382(3):509–518

    Article  CAS  PubMed  Google Scholar 

  58. Alexandru N, Andrei E, Safciuc F, Dragan E, Balahura AM, Badila E, Georgescu A (2020) Intravenous administration of allogenic cell-derived microvesicles of healthy origins defend against atherosclerotic cardiovascular disease development by a direct action on endothelial progenitor cells. Cell 9(2):423

    Article  CAS  Google Scholar 

  59. Kapustin AN, Shanahan CM (2016) Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol 594(11):2905–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kapustin AN, Chatrou ML, Drozdov I, Zheng Y, Davidson SM, Soong D, Furmanik M, Sanchis P, De Rosales RT, Alvarez-Hernandez D, Shroff R, Yin X, Muller K, Skepper JN, Mayr M, Reutelingsperger CP, Chester A, Bertazzo S, Schurgers LJ, Shanahan CM (2015) Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res 116(8):1312–1323

    Article  CAS  PubMed  Google Scholar 

  61. Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL, Shanahan CM (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15(11):2857–2867

    Article  CAS  PubMed  Google Scholar 

  62. Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT, Sidibe A, Schurgers LJ, Skepper JN, Proudfoot D, Mayr M, Shanahan CM (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 109(1):e1–e12

    Article  CAS  PubMed  Google Scholar 

  63. Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G, Elia L (2015) TGFβ triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res 116(11):1753–1764

    Article  CAS  PubMed  Google Scholar 

  64. Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y, Song LL, Jin LS, Zhan H, Zhang H, Li JS, Wen JK (2017) Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 25(6):1279–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Santulli G, Sardu C, Shu J, Matarese A, Wang X (2019) Abstract 802: cardiomyocyte-derived exosomal MicroRNAs regulates post-infarction inflammation and myofibroblast phenoconversion. Circ Res 125(Suppl_1):A802

    Article  Google Scholar 

  66. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao KH, Wang G, Cockerill G, Hu Y, Xu Q, Li T, Zeng L (2016) XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep 6:28627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Furmanik M, Chatrou M, van Gorp R, Akbulut A, Willems B, Schmidt H, van Eys G, Bochaton-Piallat ML, Proudfoot D, Biessen E, Hedin U, Perisic L, Mees B, Shanahan C, Reutelingsperger C, Schurgers L (2020) Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification. Circ Res 127(7):911–927

    Article  CAS  PubMed  Google Scholar 

  68. Furmanik M, van Gorp R, Whitehead M, Ahmad S, Bordoloi J, Kapustin A, Schurgers LJ, Shanahan CM (2021) Endoplasmic reticulum stress mediates vascular smooth muscle cell calcification via increased release of Grp78 (glucose-regulated protein, 78 kDa)-loaded extracellular vesicles. Arterioscler Thromb Vasc Biol 41(2):898–914

    Article  CAS  PubMed  Google Scholar 

  69. Bhat OM, Li G, Yuan X, Huang D, Gulbins E, Kukreja RC, Li PL (2020) Arterial medial calcification through enhanced small extracellular vesicle release in smooth muscle-specific Asah1 gene knockout mice. Sci Rep 10(1):1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leroyer AS, Rautou PE, Silvestre JS, Castier Y, Lesèche G, Devue C, Duriez M, Brandes RP, Lutgens E, Tedgui A, Boulanger CM (2008) CD40 ligand+ microparticles from human atherosclerotic plaques stimulate endothelial proliferation and angiogenesis a potential mechanism for intraplaque neovascularization. J Am Coll Cardiol 52(16):1302–1311

    Article  CAS  PubMed  Google Scholar 

  71. Li K, Cui M, Zhang K, Wang G, Zhai S (2021b) M1 macrophages-derived extracellular vesicles elevate microRNA-185-3p to aggravate the development of atherosclerosis in ApoE(−/−) mice by inhibiting small mothers against decapentaplegic 7. Int Immunopharmacol 90:107138

    Article  CAS  PubMed  Google Scholar 

  72. Zhang YG, Song Y, Guo XL, Miao RY, Fu YQ, Miao CF, Zhang C (2019) Exosomes derived from oxLDL-stimulated macrophages induce neutrophil extracellular traps to drive atherosclerosis. Cell Cycle 18(20):2674–2684

    Article  PubMed  Google Scholar 

  73. Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, Sakurai E, Miura K, Iwao H (2016) Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 40:353

    Article  PubMed  Google Scholar 

  74. Bouchareychas L, Duong P, Phu TA, Alsop E, Meechoovet B, Reiman R, Ng M, Yamamoto R, Nakauchi H, Gasper WJ, Van Keuren-Jensen K, Raffai RL (2021) High glucose macrophage exosomes enhance atherosclerosis by driving cellular proliferation & hematopoiesis. iScience 24(8):102847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Q, Dong Y, Wang H (2021a) microRNA-19b-3p-containing extracellular vesicles derived from macrophages promote the development of atherosclerosis by targeting JAZF1. J Cell Mol Med 26:48

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L, Wang Y (2019) Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics 9(23):6901–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, Durkan C, Dong L, Qiu J, Gregersen H, Wang G (2020) M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics 10(23):10712–10728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jaipersad AS, Lip GY, Silverman S, Shantsila E (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63(1):1–11

    Article  CAS  PubMed  Google Scholar 

  79. Furman MI, Benoit SE, Barnard MR, Valeri CR, Borbone ML, Becker RC, Hechtman HB, Michelson AD (1998) Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol 31(2):352–358

    Article  CAS  PubMed  Google Scholar 

  80. Satta N, Freyssinet JM, Toti F (1997) The significance of human monocyte thrombomodulin during membrane vesiculation and after stimulation by lipopolysaccharide. Br J Haematol 96(3):534–542

    Article  CAS  PubMed  Google Scholar 

  81. Aharon A, Tamari T, Brenner B (2008) Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb Haemost 100(5):878–885

    Article  CAS  PubMed  Google Scholar 

  82. Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102(7):2678–2683

    Article  CAS  PubMed  Google Scholar 

  83. Chironi G, Simon A, Hugel B, Del Pino M, Gariepy J, Freyssinet JM, Tedgui A (2006) Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 26(12):2775–2780

    Article  CAS  PubMed  Google Scholar 

  84. Hoyer FF, Giesen MK, Nunes França C, Lütjohann D, Nickenig G, Werner N (2012) Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. J Cell Mol Med 16(11):2777–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oggero S, de Gaetano M, Marcone S, Fitzsimons S, Pinto AL, Ikramova D, Barry M, Burke D, Montero-Melendez T, Cooper D, Burgoyne T, Belton O, Norling LV, Brennan EP, Godson C, Perretti M (2021) Extracellular vesicles from monocyte/platelet aggregates modulate human atherosclerotic plaque reactivity. J Extracell Vesicles 10(6):12084

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144

    Article  CAS  PubMed  Google Scholar 

  87. Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD (2009) Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PloS One 4(9):e7140

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wang Y, Xu Z, Wang X, Zheng J, Lv Z (2021b) Extracellular-vesicle containing miRNA-503-5p released by macrophages contributes to atherosclerosis. Aging 13:12239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kuhn S, Splith K, Ballschuh C, Feldbrugge L, Krenzien F, Atanasov G, Benzing C, Hau HM, Engelmann C, Berg T, Schulte Am Esch J, Pratschke J, Robson SC, Schmelzle M (2018) Mononuclear-cell-derived microparticles attenuate endothelial inflammation by transfer of miR-142-3p in a CD39 dependent manner. Purinergic Signal 14(4):423–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eyre J, Burton JO, Saleem MA, Mathieson PW, Topham PS, Brunskill NJ (2011) Monocyte- and endothelial-derived microparticles induce an inflammatory phenotype in human podocytes. Nephron Exp Nephrol 119(3):e58–e66

    Article  CAS  PubMed  Google Scholar 

  91. Miyazaki Y, Nomura S, Miyake T, Kagawa H, Kitada C, Taniguchi H, Komiyama Y, Fujimura Y, Ikeda Y, Fukuhara S (1996) High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88(9):3456–3464

    Article  CAS  PubMed  Google Scholar 

  92. Gemmell CH, Sefton MV, Yeo EL (1993) Platelet-derived microparticle formation involves glycoprotein IIb-IIIa. Inhibition by RGDS and a Glanzmann’s thrombasthenia defect. J Biol Chem 268(20):14586–14589

    Article  CAS  PubMed  Google Scholar 

  93. Rosinska J, Lukasik M, Kozubski W (2017) The impact of vascular disease treatment on platelet-derived microvesicles. Cardiovasc Drugs Ther 31(5–6):627–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. George M, Ganesh MR, Sridhar A, Jena A, Rajaram M, Shanmugam E, Dhandapani VE (2015) Evaluation of endothelial and platelet derived microparticles in patients with acute coronary syndrome. J Clin Diagn Res 9(12):Oc09–Oc13

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Preston RA, Jy W, Jimenez JJ, Mauro LM, Horstman LL, Valle M, Aime G, Ahn YS (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41(2):211–217

    Article  CAS  PubMed  Google Scholar 

  96. Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG, Arnoux D, Charpiot P, Freyssinet JM, Oliver C, Sampol J, Dignat-George F (2002) Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 51(9):2840–2845

    Article  CAS  PubMed  Google Scholar 

  97. Distler JH, Huber LC, Hueber AJ, Reich CF 3rd, Gay S, Distler O, Pisetsky DS (2005) The release of microparticles by apoptotic cells and their effects on macrophages. Apoptosis 10(4):731–741

    Article  CAS  PubMed  Google Scholar 

  98. Cauwenberghs S, Feijge MA, Harper AG, Sage SO, Curvers J, Heemskerk JW (2006) Shedding of procoagulant microparticles from unstimulated platelets by integrin-mediated destabilization of actin cytoskeleton. FEBS Lett 580(22):5313–5320

    Article  CAS  PubMed  Google Scholar 

  99. Urner M, Herrmann IK, Buddeberg F, Schuppli C, Roth Z’graggen B, Hasler M, Schanz U, Mehr M, Spahn DR, Beck Schimmer B (2012) Effects of blood products on inflammatory response in endothelial cells in vitro. PloS One 7(3):e33403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xie RF, Hu P, Wang ZC, Yang J, Yang YM, Gao L, Fan HH, Zhu YM (2015) Platelet-derived microparticles induce polymorphonuclear leukocyte-mediated damage of human pulmonary microvascular endothelial cells. Transfusion 55(5):1051–1057

    Article  CAS  PubMed  Google Scholar 

  101. Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E, Laurindo FR (2004) Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: a novel vascular redox pathway. Crit Care Med 32(3):818–825

    Article  CAS  PubMed  Google Scholar 

  102. Gidlöf O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, Erlinge D (2013) Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood 121(19):3908–3917, s3901–3926

    Article  PubMed  Google Scholar 

  103. Barry OP, Pratico D, Lawson JA, FitzGerald GA (1997) Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin Invest 99(9):2118–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barry OP, Praticò D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest 102(1):136–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Diehl P, Nienaber F, Zaldivia MTK, Stamm J, Siegel PM, Mellett NA, Wessinger M, Wang X, McFadyen JD, Bassler N, Puetz G, Htun NM, Braig D, Habersberger J, Helbing T, Eisenhardt SU, Fuller M, Bode C, Meikle PJ, Chen YC, Peter K (2019) Lysophosphatidylcholine is a major component of platelet microvesicles promoting platelet activation and reporting atherosclerotic plaque instability. Thromb Haemost 119(8):1295–1310

    Article  PubMed  Google Scholar 

  106. Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C (2005) Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 25(7):1512–1518

    Article  CAS  PubMed  Google Scholar 

  107. Koenen RR, Weber C, Heemskerk J, Vasina E (2010) Platelets and platelet-derived microparticles in vascular inflammatory disease. Inflamm Allergy Drug Targets 9(5):346

    Article  PubMed  Google Scholar 

  108. Ma Y, Yang X, Chatterjee V, Meegan JE, Beard RS Jr, Yuan SY (2019) Role of neutrophil extracellular traps and vesicles in regulating vascular endothelial permeability. Front Immunol 10:1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Johnson BL 3rd, Midura EF, Prakash PS, Rice TC, Kunz N, Kalies K, Caldwell CC (2017) Neutrophil derived microparticles increase mortality and the counter-inflammatory response in a murine model of sepsis. Biochim Biophys Acta Mol Basis Dis 1863(10 Pt B):2554–2563

    Article  CAS  PubMed  Google Scholar 

  110. El Habhab A, Altamimy R, Abbas M, Kassem M, Amoura L, Qureshi AW, El Itawi H, Kreutter G, Khemais-Benkhiat S, Zobairi F, Schini-Kerth VB, Kessler L, Toti F (2020) Significance of neutrophil microparticles in ischaemia-reperfusion: pro-inflammatory effectors of endothelial senescence and vascular dysfunction. J Cell Mol Med 24(13):7266–7281

    Article  PubMed  PubMed Central  Google Scholar 

  111. Nosalski R, Guzik TJ (2017) Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 174(20):3496–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Connolly KD, Guschina IA, Yeung V, Clayton A, Draman MS, Von Ruhland C, Ludgate M, James PE, Rees DA (2015) Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis. J Extracell Vesicles 4:29159

    Article  PubMed  Google Scholar 

  113. Connolly KD, Rees DA, James PE (2021) Role of adipocyte-derived extracellular vesicles in vascular inflammation. Free Radic Biol Med 172:58–64

    Article  CAS  PubMed  Google Scholar 

  114. Wadey RM, Connolly KD, Mathew D, Walters G, Rees DA, James PE (2019) Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis 283:19–27

    Article  CAS  PubMed  Google Scholar 

  115. Xie Z, Wang X, Liu X, Du H, Sun C, Shao X, Tian J, Gu X, Wang H, Tian J, Yu B (2018) Adipose derived exosomes exert proatherogenic effects by regulating macrophage foam cell formation and polarization. J Am Heart Assoc 7(5):e007442

    Article  PubMed  PubMed Central  Google Scholar 

  116. Li X, Ballantyne LL, Yu Y, Funk CD (2019) Perivascular adipose tissue–derived extracellular vesicle miR-221-3p mediates vascular remodeling. FASEB J 33(11):12704–12722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Crewe C, Joffin N, Rutkowski JM, Kim M, Zhang F, Towler DA, Gordillo R, Scherer PE (2018) An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175(3):695–708.e613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li W, Jin LY, Cui YB, Xie N (2021c) Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-17-3p ameliorates inflammatory reaction and antioxidant injury of mice with diabetic retinopathy via targeting STAT1. Int Immunopharmacol 90:107010

    Article  CAS  PubMed  Google Scholar 

  119. Rautou P-E, Leroyer AS, Ramkhelawon B, Devue C, Duflaut D, Vion A-C, Nalbone G, Castier Y, Leseche G, Lehoux S, Tedgui A, Boulanger CM (2011) Microparticles from human atherosclerotic plaques promote endothelial ICAM-1–dependent monocyte adhesion and transendothelial migration. Circ Res 108(3):335–343

    Article  CAS  PubMed  Google Scholar 

  120. Lou J, Wu J, Feng M, Dang X, Wu G, Yang H, Wang Y, Li J, Zhao Y, Shi C, Liu J, Zhao L, Zhang X, Gao F (2021) Exercise promotes angiogenesis by enhancing endothelial cell fatty acid utilization via liver-derived extracellular vesicle miR-122-5p. J Sport Health Sci 11:495

    Article  PubMed  PubMed Central  Google Scholar 

  121. Elsemuller AK, Tomalla V, Gartner U, Troidl K, Jeratsch S, Graumann J, Baal N, Hackstein H, Lasch M, Deindl E, Preissner KT, Fischer S (2019) Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells. FASEB J 33(4):5457–5467

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, P., Deng, S., Yuan, X., Pan, J., Xu, J. (2023). Extracellular Vesicles and Vascular Inflammation. In: Xiao, J. (eds) Extracellular Vesicles in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, vol 1418. Springer, Singapore. https://doi.org/10.1007/978-981-99-1443-2_7

Download citation

Publish with us

Policies and ethics