Skip to main content
Log in

Ultrasonic-Assisted Feedstock Disintegration for Improved Biogas Production in Anaerobic Digestion: A Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Diverse feedstocks utilized in anaerobic digestion (AD) pose challenges to enzymatic disintegration because of their nature and complex physical structures and thereby limiting biogas generation. To overcome this, the AD process is often combined with pretreatment techniques, which facilitate the breaking of organic feedstock into smaller molecules and eventually result in enhanced biogas production. Among several techniques, ultrasound-assisted pretreatment of AD feedstock remains promising because it is simple to implement, requires no chemicals, and combines physical (or cavitation) and biological phenomena for degrading AD feed. This review is primarily centered on the applications of ultrasound pretreatment for disintegrating various feedstocks and increasing biogas production during AD. Biogas generation is described in relation to the ultrasound-assisted disintegration of dairy industry waste, hybrid food and municipal wastes, olive mill wastewater, rice straw, tannery wastewater, meat processing sludge, hybrid industrial waste municipal sewage sludge, and lignocellulosic biomass. The disintegration schemes of feedstocks under ultrasound are proposed. COD is solubilized, and suspended solids (SS) are reduced upon ultrasonication. The impact of ultrasonic treatment on biogas production might be amplified if paired with alkali. Furthermore, the techno-economic commercial scopes of ultrasound pretreatment-based biogas production are discussed, and recommendations for future studies are suggested.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Uma et al. [55] from Elsevier

Fig. 3
Fig. 4

Reproduced with permission from Mischopoulou et al. [72] from Elsevier. To, RMW without any pretreatment; TSc, sonication, amplitude 90%, continuous operation mode, 120 min; Tst, sonication, amplitude 90%, intermitted operation mode, 120 min; TO20, ozonation for 20 min; TO40, ozonation for 40 min; TO60, ozonation for 60 min

Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Satatista (2022) World energy consumption. https://www.statista.com/statistics/222066/projected-global-energy-consumption-by-source/. Accessed 15 Nov 2022

  2. Paolini V, Petracchini F, Segreto M, Tomassetti L, Naja N, Cecinato A (2018) Environmental impact of biogas: a short review of current knowledge. J Environ Sci Health A 53(10):899–906. https://doi.org/10.1080/10934529.2018.1459076

    Article  CAS  Google Scholar 

  3. Agency IE (2022) The outlook for biogas and biomethane to 2040. https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/the-outlook-for-biogas-and-biomethane-to-2040. Accessed 17 Nov 2022

  4. Aylin Alagöz B, Yenigün O, Erdinçler A (2018) Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: comparison with microwave pre-treatment. Ultrason Sonochem 40:193–200. https://doi.org/10.1016/j.ultsonch.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  5. Ferreira TF, Santos PA, Paula AV, de Castro HF, Andrade GSS (2021) Biogas generation by hybrid treatment of dairy wastewater with lipolytic whole cell preparations and anaerobic sludge. Biochem Eng J 169:107965. https://doi.org/10.1016/j.bej.2021.107965

    Article  CAS  Google Scholar 

  6. Li Y, Alaimo CP, Kim M, Kado NY, Peppers J, Xue J, Wan C, Green PG, Zhang R, Jenkins BM, Vogel CFA, Wuertz S, Young TM, Kleeman MJ (2019) Composition and toxicity of biogas produced from different feedstocks in California. Environ Sci Technol 53(19):11569–11579. https://doi.org/10.1021/acs.est.9b03003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Atelge MR, Atabani AE, Banu JR, Krisa D, Kaya M, Eskicioglu C, Kumar G, Lee C, Yildiz YŞ, Unalan S, Mohanasundaram R, Duman F (2020) A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel 270:117494. https://doi.org/10.1016/j.fuel.2020.117494

    Article  CAS  Google Scholar 

  8. Kullavanijaya P, Chavalparit O (2022) Biomethanation of napier grass mono-digestion in single-stage anaerobic completely stirred tank reactors seeded with cow manure and anaerobic sludge. Bioenergy Res 15(1):559–572. https://doi.org/10.1007/s12155-021-10290-4

    Article  CAS  Google Scholar 

  9. Naveen CC, Kunnoth B, Pilli S, Rao PV, Surampalli RY, Zhang TC, Bhunia P (2022) Effects of different parameters and co-digestion options on anaerobic digestion of parboiled rice mill wastewater: a review. Bioenergy Reshttps://doi.org/10.1007/s12155-022-10522-1

  10. Thaemngoen A, Saritpongteeraka K, Leu S-Y, Phuttaro C, Sawatdeenarunat C, Chaiprapat S (2020) Anaerobic digestion of napier grass (Pennisetum purpureum) in two-phase dry digestion system versus wet digestion system. Bioenergy Res 13(3):853–865. https://doi.org/10.1007/s12155-020-10110-1

    Article  CAS  Google Scholar 

  11. Vargas-Estrada L, Longoria A, Arenas E, Moreira J, Okoye PU, Bustos-Terrones Y, Sebastian PJ (2022) A review on current trends in biogas production from microalgae biomass and microalgae waste by anaerobic digestion and co-digestion. Bioenergy Res 15(1):77–92. https://doi.org/10.1007/s12155-021-10276-2

    Article  CAS  Google Scholar 

  12. AR V (2022) Evaluation of biogas through chemically treated cottonseed hull in anaerobic digestion with/without cow dung: an experimental study. Bioenergy Res 16:660–772. https://doi.org/10.1007/s12155-022-10436-y

    Article  CAS  Google Scholar 

  13. Peres S, Monteiro MR, Ferreira ML, do Nascimento Junior AF, de Los Angeles Perez Fernandez Palha M (2019) Anaerobic digestion process for the production of biogas from cassava and sewage treatment plant sludge in Brazil. Bioenergy Res 12(1):150–157. https://doi.org/10.1007/s12155-018-9942-z

    Article  CAS  Google Scholar 

  14. Agency USEP (2022) How does anaerobic digestion work? EPA Publishing. https://www.epa.gov/agstar/how-does-anaerobic-digestion-work. Accessed 30 Oct 2022

  15. Janesch E, Pereira J, Neubauer P, Junne S (2021) Phase separation in anaerobic digestion: a potential for easier process combination? Frontiers in Chemical Engineering 3:1–16. https://doi.org/10.3389/fceng.2021.711971

    Article  Google Scholar 

  16. Meegoda JN, Li B, Patel K, Wang LB (2018) A review of the processes, parameters, and optimization of anaerobic digestion. Int J Environ Res Public Health 15(10):2224. https://doi.org/10.3390/ijerph15102224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khanh Nguyen V, Kumar Chaudhary D, Hari Dahal R, Hoang Trinh N, Kim J, Chang SW, Hong Y, La Duc D, Nguyen XC, Hao Ngo H, Chung WJ, Nguyen DD (2021) Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 285:119105. https://doi.org/10.1016/j.fuel.2020.119105

    Article  CAS  Google Scholar 

  18. Yin Z, Wang J, Wang M, Liu J, Chen Z, Yang B, Zhu L, Yuan R, Zhou B, Chen H (2023) Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: a review. Sci Total Environ 873:162341. https://doi.org/10.1016/j.scitotenv.2023.162341

    Article  CAS  PubMed  Google Scholar 

  19. Song Y, Pei L, Chen G, Mu L, Yan B, Li H, Zhou T (2023) Recent advancements in strategies to improve anaerobic digestion of perennial energy grasses for enhanced methane production. Sci Total Environ 861:160552. https://doi.org/10.1016/j.scitotenv.2022.160552

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Zhao J, Krooneman J, Euverink GJW (2021) Strategies to boost anaerobic digestion performance of cow manure: laboratory achievements and their full-scale application potential. Sci Total Environ 755:142940. https://doi.org/10.1016/j.scitotenv.2020.142940

    Article  CAS  PubMed  Google Scholar 

  21. Saha B, Koley S, Khwairakpam M, Kalamdhad AS (2022) Comparative study between mono-digestion and co-digestion of terrestrial weed (Parthenium hysterophorus). Cleaner Eng Technol 11:100560. https://doi.org/10.1016/j.clet.2022.100560

    Article  Google Scholar 

  22. Uddin MM, Wright MM (2022) Anaerobic digestion fundamentals, challenges, and technological advances. Sci. Rev, Phys. https://doi.org/10.1515/psr-2021-0068

    Book  Google Scholar 

  23. Karki R, Chuenchart W, Surendra KC, Shrestha S, Raskin L, Sung S, Hashimoto A, Kumar Khanal S (2021) Anaerobic co-digestion: current status and perspectives. Bioresource Technol 330:125001. https://doi.org/10.1016/j.biortech.2021.125001

    Article  CAS  Google Scholar 

  24. Ampese LC, Sganzerla WG, Di Domenico Ziero H, Mudhoo A, Martins G, Forster-Carneiro T (2022) Research progress, trends, and updates on anaerobic digestion technology: a bibliometric analysis. J Cleaner Product 331:130004. https://doi.org/10.1016/j.jclepro.2021.130004

    Article  CAS  Google Scholar 

  25. Institute EaES (2022) Fact sheet | biogas: converting waste to energy. https://www.eesi.org/papers/view/fact-sheet-biogasconverting-waste-to-energy#:~:text=Anaerobic%20digestion%20already%20occurs%20in,trace%20amounts%20of%20other%20gases. Accessed 10 Sept 2022

  26. Solé-Bundó M, Salvadó H, Passos F, Garfí M, Ferrer I (2018) Strategies to optimize microalgae conversion to biogas: co-digestion, pretreatment and hydraulic retention time. Molecules 23(9):2096. https://doi.org/10.3390/molecules23092096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Westerholm M, Castillo MdP, Chan Andersson A, Jahre Nilsen P, Schnürer A (2019) Effects of thermal hydrolytic pre-treatment on biogas process efficiency and microbial community structure in industrial- and laboratory-scale digesters. Waste Manag 95:150–160. https://doi.org/10.1016/j.wasman.2019.06.004

    Article  CAS  PubMed  Google Scholar 

  28. Amin FR, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7(1):72. https://doi.org/10.1186/s13568-017-0375-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu J, Yan B, Gui S, Fu Y, Xia S (2023) Anaerobic co-digestion of thermo-alkaline pretreated microalgae and sewage sludge: methane potential and microbial community. J Environ Sci 127:133–142. https://doi.org/10.1016/j.jes.2022.04.020

    Article  Google Scholar 

  30. Tamang P, Tyagi VK, Gunjyal N, Rahmani AM, Singh R, Kumar P, Ahmed B, Tyagi P, Banu R, Varjani S, Kazmi AA (2023) Free nitrous acid (FNA) pretreatment enhances biomethanation of lignocellulosic agro-waste (wheat straw). Energy 264:126249. https://doi.org/10.1016/j.energy.2022.126249

    Article  CAS  Google Scholar 

  31. Lisowyj M, Wright MM (2020) A review of biogas and an assessment of its economic impact and future role as a renewable energy source. Rev Chem Eng 36(3):401–421. https://doi.org/10.1515/revce-2017-0103

    Article  Google Scholar 

  32. Deepanraj B, Sivasubramanian V, Jayaraj S (2017) Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. Int J Hydrog Energy 42(42):26522–26528. https://doi.org/10.1016/j.ijhydene.2017.06.178

    Article  CAS  Google Scholar 

  33. Harris PW, McCabe BK (2015) Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater. Appl Energy 155:560–575. https://doi.org/10.1016/j.apenergy.2015.06.026

    Article  CAS  Google Scholar 

  34. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  35. Palmowski L, Simons L, Brooks R (2006) Ultrasonic treatment to improve anaerobic digestibility of dairy waste streams. Water Sci Technol 53(8):281–288. https://doi.org/10.2166/wst.2006.259

    Article  CAS  PubMed  Google Scholar 

  36. Cesaro A, Belgiorno V (2014) Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem Eng J 240:24–37. https://doi.org/10.1016/j.cej.2013.11.055

    Article  CAS  Google Scholar 

  37. Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresource Technol 199:386–397. https://doi.org/10.1016/j.biortech.2015.09.007

    Article  CAS  Google Scholar 

  38. Neumann P, Barriga F, Álvarez C, González Z, Vidal G (2018) Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound–thermal (55 °C) pre-treatment. Bioresource Technol 262:42–51. https://doi.org/10.1016/j.biortech.2018.03.057

    Article  CAS  Google Scholar 

  39. Pansripong SAW, Liplap P, Hinsui T (2019) Effect of ultrasonic pretreatment on biogas production from rice straw. Orient J Chem 35(4):1265–1273. https://doi.org/10.13005/ojc/350403

    Article  CAS  Google Scholar 

  40. Oz NA, Uzun AC (2015) Ultrasound pretreatment for enhanced biogas production from olive mill wastewater. Ultrason Sonochem 22:565–572. https://doi.org/10.1016/j.ultsonch.2014.04.018

    Article  CAS  PubMed  Google Scholar 

  41. Sri Bala Kameswari K, Chitra K, Thanasekaran K (2011) Effect of ozonation and ultrasonication pretreatment processes on co-digestion of tannery solid wastes. Clean Technol Environ Policy 13(3):517–525. https://doi.org/10.1007/s10098-010-0334-0

    Article  CAS  Google Scholar 

  42. Zhen G, Lu X, Kato H, Zhao Y, Li Y-Y (2017) Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renew Sustain Energy Rev 69:559–577. https://doi.org/10.1016/j.rser.2016.11.187

    Article  CAS  Google Scholar 

  43. Rajput AA, Zeshan VC (2018) Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw. J Environ Manage 221:45–52. https://doi.org/10.1016/j.jenvman.2018.05.011

    Article  CAS  PubMed  Google Scholar 

  44. Kainthola J, Shariq M, Kalamdhad AS, Goud VV (2019) Enhanced methane potential of rice straw with microwave assisted pretreatment and its kinetic analysis. J Environ Manage 232:188–196. https://doi.org/10.1016/j.jenvman.2018.11.052

    Article  CAS  PubMed  Google Scholar 

  45. Moset V, Xavier CdAN, Feng L, Wahid R, Møller HB (2018) Combined low thermal alkali addition and mechanical pre-treatment to improve biogas yield from wheat straw. J Clean Prod 172:1391–1398. https://doi.org/10.1016/j.jclepro.2017.10.173

    Article  CAS  Google Scholar 

  46. Khalid MJ, Zeshan WA, Nawaz I (2019) Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw. Bioresource Technol 275:288–296. https://doi.org/10.1016/j.biortech.2018.12.051

    Article  CAS  Google Scholar 

  47. Dasgupta A, Chandel MK (2020) Enhancement of biogas production from organic fraction of municipal solid waste using acid pretreatment. SN Appl Sci 2(8):1437. https://doi.org/10.1007/s42452-020-03213-z

    Article  CAS  Google Scholar 

  48. Rouches E, Zhou S, Steyer JP, Carrere H (2016) White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Process Biochem 51(11):1784–1792. https://doi.org/10.1016/j.procbio.2016.02.003

    Article  CAS  Google Scholar 

  49. Dai B-l, Guo X-j, Yuan D-h, Xu J-m (2018) Comparison of different pretreatments of rice straw substrate to improve biogas production. Waste Biomass Valorization 9(9):1503–1512. https://doi.org/10.1007/s12649-017-9950-9

    Article  CAS  Google Scholar 

  50. Maamir W, Ouahabi Y, Poncin S, Li H-Z, Bensadok K (2017) Effect of Fenton pretreatment on anaerobic digestion of olive mill wastewater and olive mill solid waste in mesophilic conditions. Int J Green Energy 14(6):555–560. https://doi.org/10.1080/15435075.2017.1307201

    Article  CAS  Google Scholar 

  51. Bauer A, Lizasoain J, Theuretzbacher F, Agger JW, Rincón M, Menardo S, Saylor MK, Enguídanos R, Nielsen PJ, Potthast A, Zweckmair T, Gronauer A, Horn SJ (2014) Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresource Technol 166:403–410. https://doi.org/10.1016/j.biortech.2014.05.025

    Article  CAS  Google Scholar 

  52. Gayathri T, Kavitha S, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2015) Effect of citric acid induced deflocculation on the ultrasonic pretreatment efficiency of dairy waste activated sludge. Ultrason Sonochem 22:333–340. https://doi.org/10.1016/j.ultsonch.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  53. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18(1):1–18. https://doi.org/10.1016/j.ultsonch.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  54. Cadoret A, Conrad A, Block J-C (2002) Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges. Enzyme Microb Technol 31(1):179–186. https://doi.org/10.1016/S0141-0229(02)00097-2

    Article  CAS  Google Scholar 

  55. Uma Rani R, Adish Kumar S, Kaliappan S, Yeom I-T, Rajesh Banu J (2014) Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. Ultrason Sonochem 21(3):1065–1074. https://doi.org/10.1016/j.ultsonch.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  56. Somers MH, Azman S, Vanhecke R, Appels L (2021) Dairy manure digestate age increases ultrasound disintegration efficiency at low specific energies. Energies 14(6):1640. https://doi.org/10.3390/en14061640

    Article  CAS  Google Scholar 

  57. Somers MH, Jimenez J, Azman S, Steyer J-P, Baeyens J, Appels L (2021) Ultrasonication affects the bio-accessibility of primary dairy cow manure digestate for secondary post-digestion. Fuel 291:120140. https://doi.org/10.1016/j.fuel.2021.120140

    Article  CAS  Google Scholar 

  58. Associates I (2019) How ultrasonic disintegration of sewage sludge improves wastewater treatment plant biogas outputs. IPPTS Anearobic Digestion Cummunity:1. https://anaerobic-digestion.com/how-ultrasonic-disintegration-of-sewage-sludge/. Accessed 3 Aug 2022

  59. Joshi SM, Gogate PR (2019) Intensifying the biogas production from food waste using ultrasound: Understanding into effect of operating parameters. Ultrason. Sonochem. 59:104755. https://doi.org/10.1016/j.ultsonch.2019.104755

    Article  CAS  PubMed  Google Scholar 

  60. Gulsen Akbay HE, Dizge N, Kumbur H (2021) Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal, and hybrid pretreatment. Bioresource Technol. 340:125688. https://doi.org/10.1016/j.biortech.2021.125688

    Article  CAS  Google Scholar 

  61. Rasapoor M, Ajabshirchi Y, Adl M, Abdi R, Gharibi A (2016) The effect of ultrasonic pretreatment on biogas generation yield from organic fraction of municipal solid waste under medium solids concentration circumstance. Energy Convers Manag 119:444–452. https://doi.org/10.1016/j.enconman.2016.04.066

    Article  CAS  Google Scholar 

  62. Xie B, Liu H, Yan Y (2009) Improvement of the activity of anaerobic sludge by low-intensity ultrasound. J Environ Manage 90(1):260–264. https://doi.org/10.1016/j.jenvman.2007.09.004

    Article  CAS  PubMed  Google Scholar 

  63. Chisti Y (2003) Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends Biotechnol 21(2):89–93. https://doi.org/10.1016/S0167-7799(02)00033-1

    Article  CAS  PubMed  Google Scholar 

  64. Jiang J, Gong C, Wang J, Tian S, Zhang Y (2014) Effects of ultrasound pre-treatment on the amount of dissolved organic matter extracted from food waste. Bioresource Technol 155:266–271. https://doi.org/10.1016/j.biortech.2013.12.064

    Article  CAS  Google Scholar 

  65. Ormaechea P, Castrillón L, Marañón E, Fernández-Nava Y, Negral L, Megido L (2017) Influence of the ultrasound pretreatment on anaerobic digestion of cattle manure, food waste and crude glycerine. Environ Technol 38(6):682–686. https://doi.org/10.1080/09593330.2016.1208278

    Article  CAS  PubMed  Google Scholar 

  66. Braeutigam P, Franke M, Ondruschka B (2014) Effect of ultrasound amplitude and reaction time on the anaerobic fermentation of chicken manure for biogas production. Biomass Bioenergy 63:109–113. https://doi.org/10.1016/j.biombioe.2014.02.007

    Article  CAS  Google Scholar 

  67. Quiroga G, Castrillón L, Fernández-Nava Y, Marañón E, Negral L, Rodríguez-Iglesias J, Ormaechea P (2014) Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge. Bioresource Technol 154:74–79. https://doi.org/10.1016/j.biortech.2013.11.096

    Article  CAS  Google Scholar 

  68. Bundhoo ZMA (2017) Effects of microwave and ultrasound irradiations on dark fermentative bio-hydrogen production from food and yard wastes. Int J Hydrog Energy 42(7):4040–4050. https://doi.org/10.1016/j.ijhydene.2016.10.149

    Article  CAS  Google Scholar 

  69. Chaurasia AK, Siwach P, Shankar R, Mondal P (2023) Effect of pre-treatment on mesophilic anaerobic co-digestion of fruit, food and vegetable waste. Clean Technol Environ Policy 25(2):603–616. https://doi.org/10.1007/s10098-021-02218-5

    Article  CAS  Google Scholar 

  70. Karthiga Devi G, Vignesh K, Chozhavendhan S (2020) 12 - Effective utilization of sugarcane trash for energy production. In: Kumar RP, Gnansounou E, Raman JK, Baskar G (eds) Refining Biomass Residues for Sustainable Energy and Bioproducts. Academic Press, 259–273. https://doi.org/10.1016/B978-0-12-818996-2.00012-0

  71. Teclu D, Tivchev G, Laing M, Wallis M (2009) Determination of the elemental composition of molasses and its suitability as carbon source for growth of sulphate-reducing bacteria. J Hazard Mater 161(2):1157–1165. https://doi.org/10.1016/j.jhazmat.2008.04.120

    Article  CAS  PubMed  Google Scholar 

  72. Mischopoulou M, Naidis P, Kalamaras S, Kotsopoulos TA, Samaras P (2016) Effect of ultrasonic and ozonation pretreatment on methane production potential of raw molasses wastewater. Renew Energ 96:1078–1085. https://doi.org/10.1016/j.renene.2015.11.060

    Article  CAS  Google Scholar 

  73. M’Arimi MM, Mecha CA, Kiprop AK, Ramkat R (2020) Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Renew. Sust Energ Rev 121:109669. https://doi.org/10.1016/j.rser.2019.109669

    Article  CAS  Google Scholar 

  74. Verma AK, Raghukumar C, Naik CG (2011) A novel hybrid technology for remediation of molasses-based raw effluents. Bioresource Technol 102(3):2411–2418. https://doi.org/10.1016/j.biortech.2010.10.112

    Article  CAS  Google Scholar 

  75. Souilem S, El-Abbassi A, Kiai H, Hafidi A, Sayadi S, Galanakis CM (2017) Chapter 1 - Olive oil production sector: environmental effects and sustainability challenges. In: Galanakis CM (ed) Olive Mill Waste. Academic Press, 1–28. https://doi.org/10.1016/B978-0-12-805314-0.00001-7

  76. Doula MK, Moreno-Ortego JL, Tinivella F, Inglezakis VJ, Sarris A, Komnitsas K (2017) Chapter 2 - Olive mill waste: recent advances for the sustainable development of olive oil industry. In: Galanakis CM (ed) Olive Mill Waste. Academic Press, 29–56. https://doi.org/10.1016/B978-0-12-805314-0.00002-9

  77. Gonçalves MR, Costa JC, Marques IP, Alves MM (2012) Strategies for lipids and phenolics degradation in the anaerobic treatment of olive mill wastewater. Water Res 46(6):1684–1692. https://doi.org/10.1016/j.watres.2011.12.046

    Article  CAS  PubMed  Google Scholar 

  78. Pekin G, Haskök S, Sargın S, Gezgin Y, Eltem R, İkizoǧlu E, Azbar N, Sukan FV (2010) Anaerobic digestion of Aegean olive mill effluents with and without pretreatment. J Chem Technol Biotechnol 85(7):976–982. https://doi.org/10.1002/jctb.2390

    Article  CAS  Google Scholar 

  79. Hamdi M (1996) Anaerobic digestion of olive mill wastewaters. Process Biochem 31(2):105–110. https://doi.org/10.1016/0032-9592(95)00035-6

    Article  CAS  Google Scholar 

  80. Borja R, Martin A, Maestro R, Alba J, Fiestas JA (1992) Enhancement of the anaerobic digestion of olive mill wastewater by the removal of phenolic inhibitors. Process Biochem 27(4):231–237. https://doi.org/10.1016/0032-9592(92)80023-V

    Article  CAS  Google Scholar 

  81. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28(6):939–951. https://doi.org/10.1016/j.wasman.2007.03.028

    Article  CAS  PubMed  Google Scholar 

  82. Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment. Water Sci Technol 24(8):35–59. https://doi.org/10.2166/wst.1991.0217

    Article  CAS  Google Scholar 

  83. Carballa M, Omil F, Alder AC, Lema JM (2006) Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Sci Technol 53(8):109–117. https://doi.org/10.2166/wst.2006.241

    Article  CAS  PubMed  Google Scholar 

  84. Blaskovicova M, Gaplovsky A, Blasko J (2007) Synthesis and photochemistry of 1-iodocyclohexene: influence of ultrasound on ionic vs. radical behaviour. Molecules 12(2):188–193. https://doi.org/10.3390/12020188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gianico A, Braguglia CM, Mescia D, Mininni G (2013) Ultrasonic and thermal pretreatments to enhance the anaerobic bioconversion of olive husks. Bioresource Technol 147:623–626. https://doi.org/10.1016/j.biortech.2013.08.054

    Article  CAS  Google Scholar 

  86. Rincón B, Bujalance L, Fermoso FG, Martín A, Borja R (2014) Effect of ultrasonic pretreatment on biomethane potential of two-phase olive mill solid waste: kinetic approach and process performance. Sci World J 2014:648624. https://doi.org/10.1155/2014/648624

    Article  CAS  Google Scholar 

  87. Moktadir MA, Rahman MM (2022) Energy production from leather solid wastes by anaerobic digestion: A critical review. Renew Sust Energ Rev 161:112378. https://doi.org/10.1016/j.rser.2022.112378

    Article  CAS  Google Scholar 

  88. Elliott A, Mahmood T (2007) Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Res 41(19):4273–4286. https://doi.org/10.1016/j.watres.2007.06.017

    Article  CAS  PubMed  Google Scholar 

  89. Show K-Y, Mao T, Lee D-J (2007) Optimisation of sludge disruption by sonication. Water Res 41(20):4741–4747. https://doi.org/10.1016/j.watres.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  90. Ouahabi YR, Bensadok K, Ouahabi A (2021) Optimization of the biomethane production process by anaerobic digestion of wheat straw using chemical pretreatments coupled with ultrasonic disintegration. Sustainability 13(13):7202. https://doi.org/10.3390/su13137202

    Article  CAS  Google Scholar 

  91. Rico JL, García H, Rico C, Tejero I (2007) Characterisation of solid and liquid fractions of dairy manure with regard to their component distribution and methane production. Biores Technol 98(5):971–979. https://doi.org/10.1016/j.biortech.2006.04.032

    Article  CAS  Google Scholar 

  92. Luste S, Luostarinen S, Sillanpää M (2009) Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry. J Hazard Mater 164(1):247–255. https://doi.org/10.1016/j.jhazmat.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  93. Ayse Filibeli GE, Gunduz C (2018) Ultrasonic pre-treatment of wastewater sludge from a meat processing industry. Brazilian J Chem Eng 35(3):909–918. https://doi.org/10.1590/0104-6632.20180353s20170156

    Article  CAS  Google Scholar 

  94. Xu X, Cao D, Wang Z, Liu J, Gao J, Sanchuan M, Wang Z (2019) Study on ultrasonic treatment for municipal sludge. Ultrasonic Sonochem 57:29–37. https://doi.org/10.1016/j.ultsonch.2019.05.008

    Article  CAS  Google Scholar 

  95. SUN Yuzuo LY (2011) Study on effects of ultrasonic on the dehydration function of sludge and internal mechanism. J Anhui Agric Univ 39(28):17369–17371. http://caod.oriprobe.com/articles/28725306/Study_on_Effects_of_Ultrasonic_on_the_Dehydration_Function_of_Sludge_a.htm

  96. Yin Wei ZZ, Xiaoping Lu (2005) Effect of ultrasonic sound intensity and treatment time on sludge-bound water. Chem Ind Eng Prog 24(3):307–310. https://doi.org/10.1016/j.ultsonch.2019.05.008

    Article  CAS  Google Scholar 

  97. Wu Yuanhui LS, Fei Qi (2016) Effect of Fenton-like reagent coupled ultrasound on dewatering performance of activated sludge. J Environ Eng 10(5):2655–2659

    Google Scholar 

  98. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresourc Bioprocess 4(1):7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  99. Gonzalez-Fernandez C, Timmers RA, Ruiz B, Molinuevo-Salces B (2015) Ultrasound-enhanced biogas production from different substrates. In: Fang Z, Smith JRL, Qi X (eds) Production of Biofuels and Chemicals with Ultrasound. Springer Netherlands, Dordrecht, 209–242. https://doi.org/10.1007/978-94-017-9624-8_8

  100. Sun R, Tomkinson J (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9(2):85–93. https://doi.org/10.1016/S1350-4177(01)00106-7

    Article  CAS  PubMed  Google Scholar 

  101. Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166(3):1066–1082. https://doi.org/10.1016/j.cej.2010.11.069

    Article  CAS  Google Scholar 

  102. Van Hung N, Maguyon-Detras MC, Migo MV, Quilloy R, Balingbing C, Chivenge P, Gummert M (2020) Rice Straw Overview: Availability, Properties, and Management Practices. In: Gummert M, Hung NV, Chivenge P, Douthwaite B (eds) Sustainable rice straw management. Springer International Publishing, Cham, 1–13. https://doi.org/10.1007/978-3-030-32373-8_1

  103. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technol 101(13):4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  104. Carvalheiro F, Duarte LC, Girio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  105. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96(6):673–686. https://doi.org/10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  106. Zhong W, Zhang Z, Qiao W, Fu P, Liu M (2011) RETRACTED: comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion. Renewable Energ 36(6):1875–1879. https://doi.org/10.1016/j.renene.2010.12.020

    Article  CAS  Google Scholar 

  107. Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge: Effect of phosphate supplementation. Bioresource Technol 101(12):4343–4348. https://doi.org/10.1016/j.biortech.2010.01.083

    Article  CAS  Google Scholar 

  108. Hesami SM, Zilouei H, Karimi K, Asadinezhad A (2015) Enhanced biogas production from sunflower stalks using hydrothermal and organosolv pretreatment. Ind Crops Prod 76:449–455. https://doi.org/10.1016/j.indcrop.2015.07.018

    Article  CAS  Google Scholar 

  109. Achinas S, Achinas V, Euverink GJW (2017) A technological overview of biogas production from biowaste. Engineering 3(3):299–307. https://doi.org/10.1016/J.ENG.2017.03.002

    Article  Google Scholar 

  110. Chu CP, Chang B-V, Liao GS, Jean DS, Lee DJ (2001) Observations on changes in ultrasonically treated waste-activated sludge. Water Res 35(4):1038–1046. https://doi.org/10.1016/S0043-1354(00)00338-9

    Article  CAS  PubMed  Google Scholar 

  111. Kumari D, Singh R (2020) Ultrasonic assisted petha waste water pretreatment of rice straw for optimum production of methane and ethanol using mixed microbial culture. Renewable Energ 145:682–690. https://doi.org/10.1016/j.renene.2019.06.082

    Article  CAS  Google Scholar 

  112. Rice Straw (2022). Rice knowledge bank:1. http://www.knowledgebank.irri.org/step-by-step-production/postharvest/rice-by-products/rice-straw. Accessed 5 Aug 2022

  113. Jensen CU, Rodriguez Guerrero JK, Karatzos S, Olofsson G, Iversen SB (2017) Fundamentals of Hydrofaction™: renewable crude oil from woody biomass. Biomass Convers Biorefin 7(4):495–509. https://doi.org/10.1007/s13399-017-0248-8

    Article  CAS  Google Scholar 

  114. Lim JS, Abdul Manan Z, Wan Alwi SR, Hashim H (2012) A review on utilisation of biomass from rice industry as a source of renewable energy. Renew Sust Energ Rev 16(5):3084–3094. https://doi.org/10.1016/j.rser.2012.02.051

    Article  CAS  Google Scholar 

  115. Pérez-Elvira S, Fdz-Polanco M, Plaza FI, Garralón G, Fdz-Polanco F (2009) Ultrasound pre-treatment for anaerobic digestion improvement. Water Sci Technol 60(6):1525–1532. https://doi.org/10.2166/wst.2009.484

    Article  PubMed  Google Scholar 

  116. Nah IW, Kang YW, Hwang K-Y, Song W-K (2000) Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Water Res 34(8):2362–2368. https://doi.org/10.1016/S0043-1354(99)00361-9

    Article  CAS  Google Scholar 

  117. Buller LS, Sganzerla WG, Lima MN, Muenchow KE, Timko MT, Forster-Carneiro T (2022) Ultrasonic pretreatment of brewers’ spent grains for anaerobic digestion: biogas production for a sustainable industrial development. J. Cleaner Prod. 355:131802. https://doi.org/10.1016/j.jclepro.2022.131802

    Article  CAS  Google Scholar 

  118. Boni MR, Polettini A, Pomi R, Rossi A (2020) Effect of ultrasonic post-treatment on anaerobic digestion of lignocellulosic waste. Waste Manag Res 39(2):221–232. https://doi.org/10.1177/0734242X20931940

    Article  PubMed  Google Scholar 

  119. Xie RJ, Xing YJ, Ghani YAA, K-eE O, S-wW Ng (2007) Full-scale demonstration of an ultrasonic disintegration technology in enhancing anaerobic digestion of mixed primary and thickened secondary sewage sludge. J Environ Eng Sci 6(5):533–541. https://doi.org/10.1139/S07-013

    Article  CAS  Google Scholar 

  120. Tena M, Buller LS, Sganzerla WG, Berni M, Forster-Carneiro T, Solera R, Pérez M (2022) Techno-economic evaluation of bioenergy production from anaerobic digestion of by-products from ethanol flex plants. Fuel 309:122171. https://doi.org/10.1016/j.fuel.2021.122171

    Article  CAS  Google Scholar 

  121. Al-Wahaibi A, Osman AI, AaH A-M, Alqaisi O, Baawain M, Fawzy S, Rooney DW (2020) Techno-economic evaluation of biogas production from food waste via anaerobic digestion. Sci Report 10(1):15719. https://doi.org/10.1038/s41598-020-72897-5

    Article  CAS  Google Scholar 

  122. Akbulut A (2012) Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: çiçekdağı case study. Energy 44(1):381–390. https://doi.org/10.1016/j.energy.2012.06.017

    Article  Google Scholar 

  123. Sganzerla WG, Buller LS, Mussatto SI, Forster-Carneiro T (2021) Techno-economic assessment of bioenergy and fertilizer production by anaerobic digestion of brewer’s spent grains in a biorefinery concept. J Cleaner Prod 297:126600. https://doi.org/10.1016/j.jclepro.2021.126600

    Article  CAS  Google Scholar 

  124. Zabot GL, Moraes MN, Meireles MAA (2018) Process integration for producing tocotrienols-rich oil and bixin-rich extract from annatto seeds: a techno-economic approach. Food Bioprod Process 109:122–138. https://doi.org/10.1016/j.fbp.2018.03.007

    Article  CAS  Google Scholar 

  125. Pramanik SK, Suja FB, Zain SM, Pramanik BK (2019) The anaerobic digestion process of biogas production from food waste: prospects and constraints. Bioresource Technol. Report 8:100310. https://doi.org/10.1016/j.biteb.2019.100310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Iram Arman: literature survey, initial draft preparation, and revision. Khursheed B. Ansari: conceptualization, draft editing, and proofreading; Mohammad Danish and I.H. Farooqi: technical discussion, suggestions on the manuscript outline, and visualization. Arinjay K. Jain: conceptualization, technical inputs, manuscript outline correction, and finalization.

Corresponding authors

Correspondence to Khursheed B. Ansari or Arinjay K. Jain.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Challenges of the AD process and the need for pretreatment methods are deliberated.

• Ultrasound-assisted disintegration of AD feedstocks is explicitly discussed.

• Inclusion of alkali during ultrasound pretreatment boosted biogas and methane yields.

• Commercial-scale pretreatment of AD feedstock using ultrasound is feasible.

• Techno-economic and future perspectives of AD processing are presented.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arman, I., Ansari, K.B., Danish, M. et al. Ultrasonic-Assisted Feedstock Disintegration for Improved Biogas Production in Anaerobic Digestion: A Review. Bioenerg. Res. 16, 1512–1527 (2023). https://doi.org/10.1007/s12155-023-10608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10608-4

Keywords

Navigation