Skip to main content
Log in

Biomethanation of Napier Grass Mono-digestion in Single-Stage Anaerobic Completely Stirred Tank Reactors Seeded with Cow Manure and Anaerobic Sludge

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study aimed to evaluate methane productivity of Napier grass mono-digestion in single-stage anaerobic completely stirred tank reactors (CSTR) inoculated differently by cow manure (COM), anaerobic sludge (ANS), and a mix of COM and ANS for CSTR1 to 3, respectively. The different inoculation promoted operational performance, stability, and organic loading rate (OLR) differently. The produced biogas and methane varied significantly with OLR (p < 0.05). The maximum gas productivities between 0.42–0.48 L-biogas/g VSadded and 0.27–0.34 L-CH4/g VSadded were obtained at OLR of 1.0–1.5 g VS/L day. Later, the increase in OLR to 2.0 and 2.4 g VS/L day decreased biogas and methane yields by 24.85–39.65% and 11.66–52.89%. Co-inoculation of COM and ANS was a promising strategy that encouraged more stability in CSTR3 than the other reactors. Consequently, the methanogenic performance was developed in all digesters, depicted clearly by high methane content between 52.94 and 59.30% in produced biogas. A similar microbial structure was found in each CSTR-dominated predominantly by Proteobacteria, Bacteroidetes, and Formicates. About 0.5–3.0% of the whole populations were archaea identified distinctly to Methanocorpusculum, Methanospirillum, and Methanosaeta. This finding confirmed the importance of seed inoculation to practical gas productivity and confined organic loading capacity of Napier grass biomethanation in single-stage wet and mono-substrate digestion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Verstraete W, Morgan-Sagastume F, Aiyuk S, Waweru M, Rabaey K, Lissens G (2005) Anaerobic digestion as a core technology in sustainable management of organic matter. Wat Sci Technol 59:59–66. https://doi.org/10.2166/wst.2005.0498

    Article  Google Scholar 

  2. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  CAS  PubMed  Google Scholar 

  3. Paul S, Dutta A (2018) Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour Conserv Recycl 130:164–174. https://doi.org/10.1016/j.resconrec.2017.12.005

    Article  Google Scholar 

  4. Kullavanijaya P, Chavalparit O (2019) The production of volatile fatty acids from Napier grass via an anaerobic leach bed process: the influence of leachate dilution, inoculum, recirculation, and buffering agent addition. J Environ Chem Eng 7(6):103458. https://doi.org/10.1016/j.jece.2019.103458

    Article  CAS  Google Scholar 

  5. Takara D, Khanal SK (2015) Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential. Bioresour Technol 188:103–108. https://doi.org/10.1016/j.biortech.2015.01.114

    Article  CAS  PubMed  Google Scholar 

  6. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira DM, Mota TR, Grandis A, de Morais GR, de Lucas RC, Polizeli ML, dos Santos WD (2020) Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renew Energy 147:2206–2217. https://doi.org/10.1016/j.renene.2019.10.020

    Article  CAS  Google Scholar 

  8. Chanpla M, Kullavanijaya P, Janejadkarn A, Chavalparit O (2018) Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE J Civ Eng 22(1):40–45. https://doi.org/10.1016/j.biortech.2006.07.007

    Article  CAS  Google Scholar 

  9. Dien BS, Anderson WF, Cheng MH, Knoll JE, Lamb M, O’Bryan PJ, Slininger PJ (2020) Field productivities of Napier grass for production of sugars and ethanol. ACS Sustain Chem Eng 8(4):2052–2060. https://doi.org/10.1021/acssuschemeng.9b06637

    Article  CAS  Google Scholar 

  10. Kongkeitkajorn MB, Sae-Kuay C, Reungsan A (2020) Evaluation of Napier grass for bioethanol production through a fermentation process. Processes 8(5):567. https://doi.org/10.3390/pr8050567

    Article  CAS  Google Scholar 

  11. Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, Inochanon R, Winayanuwattikun P, Yongvanich T, Chulalaksananukul W (2012) The potential of cellulosic ethanol production from grasses in Thailand. J Biomed Biotechnol 303748. https://doi.org/10.1155/2012/303748

  12. Nizami AS, Murphy JD (2010) What type of digester configurations should be employed to produce biomethane from grass silage? Renew Sust Energ Rev 14(6):1558–1568. https://doi.org/10.1016/j.rser.2010.02.006

    Article  CAS  Google Scholar 

  13. Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes: an overview of research achievements and perspectives. Bioresour Technol 74(1):3–16. https://doi.org/10.1016/S0960-8524(00)00023-7

    Article  CAS  Google Scholar 

  14. Ozbayram EG, Ince O, Ince B, Harms H, Kleinsteuber S (2018) Comparison of rumen and manure microbiomes and implications for the inoculation of anaerobic digesters. Microorganisms 6(1):15. https://doi.org/10.3390/microorganisms6010015

    Article  CAS  PubMed Central  Google Scholar 

  15. Gupta KK, Aneja KR, Rana D (2016) Current status of cow dung as a bioresource for sustainable development. Bioresour Bioprocess 3(1):1–11. https://doi.org/10.5402/2011/362459

    Article  Google Scholar 

  16. Koch K, Wichern M, Lubken M, Horn H (2009) Mono fermentation of grass silage by means of loop reactor. Bioresour Technol 100(23):5934–5940. https://doi.org/10.1016/j.biortech.2009.06.020

    Article  CAS  PubMed  Google Scholar 

  17. Thamsiriroj T, Murphy JD (2011) Modelling mono-digestion of grass silage in a 2-stage CSTR anaerobic digester using ADM1. Bioresour Technol 102(2):948–959. https://doi.org/10.1016/j.biortech.2010.09.051

    Article  CAS  PubMed  Google Scholar 

  18. Awais M, Alvarado-Morales M, Tsapekos P, Gulfraz M, Angelidaki I (2016) Methane production and kinetic modeling for co-digestion of manure with lignocellulosic residues. Energ Fuel 30(12):10516–10523. https://doi.org/10.1021/acs.energyfuels.6b02105

    Article  CAS  Google Scholar 

  19. Khanal SK, Rasmussen M, Shrestha P, Van Leeuwen H, Visvanathan C, Liu H (2008) Bioenergy and biofuel production from wastes/residues of emerging biofuel industries. Water Environ Res 1625-1647. https://doi.org/10.2175/106143008X328752

  20. Oz NA, Ince O, Turker G, Ince BK (2012) Effect of seed sludge microbial community and activity on the performance of anaerobic reactors during the start-up period. World J Microbiol Biotechnol 28(2):637–647. https://doi.org/10.1007/s11274-011-0857-5

    Article  CAS  PubMed  Google Scholar 

  21. Escudie R, Cresson R, Delgenes JP, Bernet N (2011) Control of start-up and operation of anaerobic biofilm reactors: an overview of 15 years of research. Wat Res 45(1):1–10. https://doi.org/10.1016/j.watres.2010.07.081

    Article  CAS  Google Scholar 

  22. APHA, AWWA, WEFF (1998) Standard methods for the examination of water and wastewater. 20th Edition, American Public Health Association, American Water Works Association and Water Environmental Federation, the United States of America

  23. Anderson GK, Yang G (1992) Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Wat Environ Res 53:53–59. https://doi.org/10.2175/WER.64.1.8

    Article  Google Scholar 

  24. Soest PV, Wine RH (1967) Use of detergents in the analysis of fibrous feeds IV determination of plant cell-wall constituents. J AOAC Int 50(1):50–55. https://doi.org/10.1093/jaoac/50.1.50

    Article  Google Scholar 

  25. Soto M, Mendez R, Lema JM (1993) Methanogenic and non-methanogenic activity tests-theoretical basis and experimental setup. Wat Res 27(8):1361–1376. https://doi.org/10.1016/0043-1354(93)90224-6

    Article  CAS  Google Scholar 

  26. Smolders GJF, Van der Meij J, Van Loosdrecht MCM, Heijnen JJ (1994) Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnol Bioeng 43(6):461–470. https://doi.org/10.1002/bit.260430605

    Article  CAS  PubMed  Google Scholar 

  27. Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79(10):3148–3155. https://doi.org/10.1128/AEM.00256-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McAdam PR, Richardson EJ, Fitzgerald JR (2014) High-throughput sequencing for the study of bacterial pathogen biology. Curr Opin Microbiol 19:106–113. https://doi.org/10.1016/j.mib.2014.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamilari E, Tomazou M, Antoniades A, Tsaltas D (2019) High throughput sequencing technologies as a new toolbox for deep analysis, characterization and potentially authentication of protection designation of origin cheeses?. Int J Food Sci 5837301. https://doi.org/10.1155/2019/5837301

  30. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322. https://doi.org/10.1128/aem.62.2.316-322.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60(4):1232–1240. https://doi.org/10.1128/AEM.60.4.1232-1240.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  Google Scholar 

  33. Thaemngoen A, Saritpongteeraka K, Leu SY, Phuttaro C, Sawatdeenarunat C, Chaiprapat S (2020) Anaerobic digestion of Napier grass (Pennisetum purpureum) in two-phase dry digestion system versus wet digestion system. BioEnergy Res 1–13. https://doi.org/10.1007/s12155-020-10110-1

  34. Prapinagsorn W, Sittijunda S, Reungsang A (2017) Co-digestion of Napier grass and its silage with cow dung for methane production. Energies 10(10):1654. https://doi.org/10.3390/en11010047

    Article  CAS  Google Scholar 

  35. Sawanon, S, Sangsri P, Leungprasert S, Sinbuathong N (2017) Methane production from Napier grass by co-digestion with cow dung. In Energy Solutions to Combat Global Warming. Springer, Cham 169–180. https://doi.org/10.1007/978-3-319-26950-4_7

  36. Suaisom P, Pholchan P, Aggarangsi P (2019) Holistic determination of suitable conditions for biogas production from Pennisetum purpureum x Pennisetum americanum liquor in anaerobic baffled reactor. J Environ Manage 247:730–737. https://doi.org/10.1016/j.jenvman.2019.06.103

    Article  CAS  PubMed  Google Scholar 

  37. Wilawan W, Pholchan P, Aggarangsi P (2014) Biogas production from co-digestion of Pennisetum pururem cv. Pakchong1 grass and layer chicken manure using completely stirred tank. Energy Procedia 52:216–222. https://doi.org/10.1016/J.EGYPRO.2014.07.072

    Article  CAS  Google Scholar 

  38. Jagadabhi PS, Lehtomaki A, Rintala J (2008) Co-Digestion of grass silage and cow manure in a CSTR by re-circulation of alkali treated solids of the digestate. Environ Technol 29(10):1085–1093. https://doi.org/10.1080/09593330802180385

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi T, Yasuda D, Li YY, Kubota K, Harada H, Yu HQ (2009) Characterization of start-up performance and archaea community shift during anaerobic self-degradation of waste activated sludge. Bioresour Technol 100:4981–4988. https://doi.org/10.1016/j.biortech.2009.05.043

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen LN, Nguyen AQ, Johir MAH, Guo W, Ngo HH, Chaves AV, Nghiem LD (2019) Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass. Chemosphere 228:702–708. https://doi.org/10.1016/j.biortech.2012.11.073

    Article  CAS  PubMed  Google Scholar 

  41. Ince BK, Selcuk A, Ince O (2002) Effect of a chemical synthesis-based pharmaceutical wastewater on performance, acetoclastic methanogenic activity and microbial population in an up-flow anaerobic filter. J Chem Technol Biotechnol 77(6):711–719. https://doi.org/10.1002/jctb.629

    Article  CAS  Google Scholar 

  42. Wang Q, Jiang J, Zhang Y, Li K (2015) Effect of initial total solids concentration on volatile fatty acid production from food waste during anaerobic acidification. Environ Technol 36(15):1884–1891. https://doi.org/10.1080/09593330.2015.1015454

    Article  CAS  PubMed  Google Scholar 

  43. Gomez X, Cuetos MJ, Prieto JI, Moran A (2009) Bio-hydrogen production from waste fermentation: mixing and static conditions. Renew Energy 34:970–975. https://doi.org/10.1016/j.renene.2008.08.011

    Article  CAS  Google Scholar 

  44. Abbassi-Guendouz A, Brockmann D, Trably E, Dumas C, Delgenes JP, Steyer JP, Escudie R (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour Technol 111:55s61. https://doi.org/10.1016/j.biortech.2012.01.174

    Article  CAS  Google Scholar 

  45. Karim K, Hoffmann R, Klasson KT, Al-Dahhan MH (2005) Anaerobic digestion of animal waste: effect of mode of mixing. Water Res 39:3597–3606. https://doi.org/10.1016/j.watres.2005.06.019

    Article  CAS  PubMed  Google Scholar 

  46. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190. https://doi.org/10.1007/s11157-008-9131-1

    Article  CAS  Google Scholar 

  47. Demirel B (2014) Major pathway of methane formation from energy crops in agricultural biogas digesters. Crit Rev Environ Sci Technol 44(3):199–222. https://doi.org/10.1080/10643389.2012.710452

    Article  CAS  Google Scholar 

  48. Yi J, Dong B, Jin J, Dai X (2014) Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS ONE 9(7):e102548. https://doi.org/10.1371/journal.pone.0102548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Franke-Whittle IH, Walter A, Ebner C, Insam H (2014) Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic community. Waste Manag 34(11):2080–2089. https://doi.org/10.1016/j.wasman.2014.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJ, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167(10):581–589. https://doi.org/10.1016/j.micres.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  51. Sawatdeenarunat C, Nam H, Adhikari S, Sung S, Khanal SK (2018) Decentralized biorefinery for lignocellulosic biomass: integrating anaerobic digestion with thermochemical conversion. Bioresour Technol 250:140–147. https://doi.org/10.1016/j.biortech.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  52. Pokoj T, Klimiuk E, Bułkowska K, Kowal P, Ciesielski S (2020) Effect of individual components of lignocellulosic biomass on methane production and methanogen community structure. Waste Biomass Valorization 11(4):1421–1433. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Office of Higher Education Commission (OHEC) and the S&T Postgraduate Education and Research Development Office (PERDO).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Pratin Kullavanijaya under the supervision of Orathai Chavalparit. The first draft of the manuscript was written by Pratin Kullavanijaya, suggested, and commented on by Orathai Chavalparit. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Orathai Chavalparit.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kullavanijaya, P., Chavalparit, O. Biomethanation of Napier Grass Mono-digestion in Single-Stage Anaerobic Completely Stirred Tank Reactors Seeded with Cow Manure and Anaerobic Sludge. Bioenerg. Res. 15, 559–572 (2022). https://doi.org/10.1007/s12155-021-10290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10290-4

Keywords

Navigation