Skip to main content

Advertisement

Log in

Potential and Characteristics of Methane Production During Anaerobic Digestion of Cabbage Waste at Different Temperatures

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Anaerobic digestion of vegetable waste is a viable approach for sustainable waste management. However, the process requires optimization. Using a batch anaerobic reactor with cabbage waste as fermentation material, the potential and characteristics of methane production during anaerobic digestion of vegetable waste at five different temperatures were investigated. The analysis revealed that the cumulative gas production increased with rising temperature and was 528.33 mL at 30 ℃; 927.5 mL at 35 ℃; 955 mL at 40 ℃; 1017.5 mL at 45 ℃; and 1075 mL at 50 ℃; the cumulative methane production at the five temperatures was 233.18, 569.14, 597.62, 437.88, and 621.65 mL, respectively, with the lowest production at 45 ℃. Methane production rates per total solid content were 97.69, 238.43, 250.37, 183.44, and 260.43 mL/g, accordingly. Methane production rates per volatile solid content were 180.00, 439.34, 461.33, 338.02, and 479.88 mL/g, respectively. Overall, the methane generation during anaerobic digestion of cabbage waste at a temperature-blind zone of 45 ℃ was relatively low. Considering the need to reduce energy consumption in industrial processes, 35 ℃ is the most suitable temperature for anaerobic digestion of cabbage waste. The study provides a theoretical basis for efficient cabbage waste utilization and industrialization of related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Materials Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wei D, Liu J, Deng C, Wang C, Zhao X, Wu K, Yin F, Yang B, Zhang W (2021) Chlorophyll changes during anaerobic digestion of cabbage waste. Energy Sources A: Recovery Util Environ Eff 1–14. https://doi.org/10.1080/15567036.2021.2009063

  2. Li D, Chen L, Liu X, Mei Z, Ren H, Cao Q, Yan Z (2017) Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste. Bioresour Technol 245(Pt A):90–97. https://doi.org/10.1016/j.biortech.2017.07.098

    Article  CAS  PubMed  Google Scholar 

  3. Zeynali R, Khojastehpour M, Ebrahimi-Nik M (2017) Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustain Environ Res 27(6):259–264. https://doi.org/10.1016/j.serj.2017.07.001

    Article  CAS  Google Scholar 

  4. Gong Y, Lyu Y, Li P et al (2019) Characterization of anaerobic digestion of Chinese cabbage waste by a thermophilic microorganism community. J Mater Cycles Waste 21(5):1144–1154. https://doi.org/10.1007/s10163-019-00865-x

    Article  CAS  Google Scholar 

  5. Liu Y, Wang T, Xing Z, Ma Y, Nan F, Pan L, Chen J (2022) Anaerobic co-digestion of Chinese cabbage waste and cow manure at mesophilic and thermophilic temperatures: digestion performance, microbial community, and biogas slurry fertility. Bioresour Technol 363:127976–127976. https://doi.org/10.1016/j.biortech.2022.127976

    Article  CAS  PubMed  Google Scholar 

  6. Ji C, Kong C, Mei Z, Li J (2017) A review of the anaerobic digestion of fruit and vegetable waste. Appl Biochem Biotech 183(3):906–922. https://doi.org/10.1007/s12010-017-2472-x

    Article  CAS  Google Scholar 

  7. Zuo Z, Wu S, Zhang W, Dong R (2014) Performance of two-stage vegetable waste anaerobic digestion depending on varying recirculation rates. Bioresour Technol 162:266–272. https://doi.org/10.1016/j.biortech.2014.03.156

    Article  CAS  PubMed  Google Scholar 

  8. Ros M, de Souza Oliveira Filho J, Perez Murcia MD et al (2017) Mesophilic anaerobic digestion of pig slurry and fruit and vegetable waste: dissection of the microbial community structure. J Clean Prod 156:757–765.https://doi.org/10.1016/j.jclepro.2017.04.110

  9. Pagés Díaz J, Pereda Reyes I, Lundin M, Sárvári Horváth I (2011) Co-digestion of different waste mixtures from agro-industrial activities: kinetic evaluation and synergetic effects. Bioresour Technol 102(23):10834–10840. https://doi.org/10.1016/j.biortech.2011.09.031

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Y, Heaven S, Banks CJ (2012) Strategies for stable anaerobic digestion of vegetable waste. Renew Energ 44:206–214. https://doi.org/10.1016/j.renene.2012.01.012

    Article  CAS  Google Scholar 

  11. Vargas-Estrada L, Longoria A, Arenas E, Moreira J, Okoye PU, Bustos-Terrones Y, Sebastian PJ (2022) A review on current trends in biogas production from microalgae biomass and microalgae waste by anaerobic digestion and co-digestion. Bioenerg Res 15(1):77–92. https://doi.org/10.1007/s12155-021-10276-2

    Article  CAS  Google Scholar 

  12. Nevzorova T, Kutcherov V (2019) Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energy Strateg Rev 26:100414. https://doi.org/10.1016/j.esr.2019.100414

    Article  Google Scholar 

  13. Pan S, Liu Q, Wen C, Li Z, Du L, Wei Y (2021) Producing biogas from rice straw: kinetic analysis and microbial community dynamics. Bioenerg Res 14(4):1338–1348. https://doi.org/10.1007/s12155-020-10226-4

    Article  CAS  Google Scholar 

  14. Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Val 8(2):267–283. https://doi.org/10.1007/s12649-016-9826-4

  15. Suhartini S, Nurika I, Paul R, Melville L (2021) Estimation of biogas production and the emission savings from anaerobic digestion of fruit-based agro-industrial waste and agricultural crops residues. Bioenerg Res 14(3):844–859. https://doi.org/10.1007/s12155-020-10209-5

    Article  CAS  Google Scholar 

  16. Nurgaliev T, Müller J, Koshelev V (2022) Biogas potential of agriculture. Bioenerg Res 15(4):2132–2144. https://doi.org/10.1007/s12155-022-10409-1

    Article  CAS  Google Scholar 

  17. Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energ 129:457–472. https://doi.org/10.1016/j.renene.2018.03.006

    Article  Google Scholar 

  18. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manage (Elmsford) 31(8):1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021

    Article  CAS  Google Scholar 

  19. Babaee A, Shayegan J, Roshani A (2013) Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature. J Environ Health Sci 11(1):15–15. https://doi.org/10.1186/2052-336X-11-15

    Article  CAS  Google Scholar 

  20. Chae KJ, Jang A, Yim SK, Kim IS (2008) The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour Technol 99(1):1–6. https://doi.org/10.1016/j.biortech.2006.11.063

    Article  CAS  PubMed  Google Scholar 

  21. Fezzani B, Ben Cheikh R (2010) Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour Technol 101(6):1628–1634. https://doi.org/10.1016/j.biortech.2009.09.067

    Article  CAS  PubMed  Google Scholar 

  22. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044

    Article  CAS  PubMed  Google Scholar 

  23. Bouallagui H, Haouari O, Touhami Y, Ben Cheikh R, Marouani L (1991) Hamdi M (2004) Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochem 39(12):2143–2148. https://doi.org/10.1016/j.procbio.2003.11.022

    Article  CAS  Google Scholar 

  24. Montañés R, Solera R, Pérez M (2015) Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: effect of temperature. Bioresour Technol 180:177–184. https://doi.org/10.1016/j.biortech.2014.12.056

    Article  CAS  PubMed  Google Scholar 

  25. Ren H, Mei Z, Fan W, Wang Y, Liu F, Luo T, Li D, Li Z, Feng R (2018) Effects of temperature on the performance of anaerobic co-digestion of vegetable waste and swine manure. Int J Agr Biol Eng 11(1):218–225. https://doi.org/10.25165/j.ijabe.20181101.3706

  26. Abudi ZN, Hu Z, Abood AR, Liu D, Gao A (2020) Effects of alkali pre-treatment, total solid content, substrate to inoculum ratio, and pH on biogas production from anaerobic digestion of mango leaves. Waste Biomass Valori 11(3):887–897. https://doi.org/10.1007/s12649-018-0437-0

    Article  CAS  Google Scholar 

  27. Passos F, Solé M, García J, Ferrer I (2013) Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Appl Energ 108:168–175. https://doi.org/10.1016/j.apenergy.2013.02.042

    Article  CAS  Google Scholar 

  28. Deepanraj B, Senthilkumar N, Ranjitha J (2021) Effect of solid concentration on biogas production through anaerobic digestion of rapeseed oil cake. Energ Source Part A 43(11):1329–1336. https://doi.org/10.1080/15567036.2019.1636902

    Article  CAS  Google Scholar 

  29. Lettinga G, Rebac S, Zeeman G (2001) Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 19(9):363–370. https://doi.org/10.1016/S0167-7799(01)01701-2

    Article  CAS  PubMed  Google Scholar 

  30. Wachemo AC, Tong H, Yuan H, Zuo X, Korai RM, Li X (2019) Continuous dynamics in anaerobic reactor during bioconversion of rice straw: rate of substance utilization, biomethane production and changes in microbial community structure. Sci Total Environ 687:1274–1284. https://doi.org/10.1016/j.scitotenv.2019.05.411

    Article  CAS  PubMed  Google Scholar 

  31. Kafle GK, Bhattarai S, Kim SH, Chen L (2014) Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study. Environ Technol 35(21):2708–2717. https://doi.org/10.1080/09593330.2014.919033

    Article  CAS  PubMed  Google Scholar 

  32. Kim M, Ahn YH, Speece R (2002) Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res (Oxford) 36(17):4369–4385. https://doi.org/10.1016/S0043-1354(02)00147-1

    Article  CAS  Google Scholar 

  33. Zhang W, Li L, Wang X, Xing W, Li R, Yang T, Lv D (2020) Role of trace elements in anaerobic digestion of food waste: process stability, recovery from volatile fatty acid inhibition and microbial community dynamics. Bioresour Technol 315:123796–123796. https://doi.org/10.1016/j.biortech.2020.123796

    Article  CAS  PubMed  Google Scholar 

  34. Sekine M, Mizuno N, Fujiwara M, Kodera T, Toda T (2022) Improving methane production from food waste by intermittent agitation: effect of different agitation frequencies on solubilization, acidogenesis, and methanogenesis. Biomass Bioenerg 164:106551. https://doi.org/10.1016/j.biombioe.2022.106551

  35. Kim KY, Yang W, Evans PJ, Logan BE (2016) Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells. Bioresour Technol 221:96–101. https://doi.org/10.1016/j.biortech.2016.09.031

    Article  CAS  PubMed  Google Scholar 

  36. Kafle GK, Bhattarai S, Kim SH, Chen L (2014) Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study. J Environ Manage 133:293–301. https://doi.org/10.1016/j.jenvman.2013.12.006

    Article  PubMed  Google Scholar 

  37. Yang L, Huang Y, Zhao M, Huang Z, Miao H, Xu Z, Ruan W (2015) Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: effect of pH adjustment. Int Biodeter Biodegr 105:153–159. https://doi.org/10.1016/j.ibiod.2015.09.005

    Article  CAS  Google Scholar 

  38. Lin L, Li Y (2017) Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – part I: reactor performance. Bioresour Technol 236:186–193. https://doi.org/10.1016/j.biortech.2017.03.136

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Yunnan Ten Thousand Talents Plan Industrial Technology Champion Project (20191096); the Model Worker Innovation Studio of Biogas Engineering and Resource Utilization, Special Project of International Science and Technology Cooperation of Yunnan Province (202003AF140001); the Kunming International Science and Technology Cooperation Base (GHJD-2020026); the Yunnan Provincial Key Laboratory of Rural Energy Engineering; and the Science and Technology Plan Project of Yunnan Province (202001AT070094).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Cheng Liao, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Wudi Zhang.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, C., Li, K., Wang, C. et al. Potential and Characteristics of Methane Production During Anaerobic Digestion of Cabbage Waste at Different Temperatures. Bioenerg. Res. 16, 2549–2559 (2023). https://doi.org/10.1007/s12155-023-10571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10571-0

Keywords

Navigation