Skip to main content
Log in

A Review of the Anaerobic Digestion of Fruit and Vegetable Waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fruit and vegetable waste is an ever-growing global question. Anaerobic digestion techniques have been developed that facilitate turning such waste into possible sources for energy and fertilizer, simultaneously helping to reduce environmental pollution. However, various problems are encountered in applying these techniques. The purpose of this study is to review local and overseas studies, which focus on the use of anaerobic digestion to dispose fruit and vegetable wastes, discuss the acidification problems and solutions in applying anaerobic digestion for fruit and vegetable wastes and investigate the reactor design (comparing single phase with two phase) and the thermal pre-treatment for processing raw wastes. Furthermore, it analyses the dominant microorganisms involved at different stages of digestion and suggests a focus for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bouallagui, H., Ben Cheikh, R., Marouani, L., & Hamdi, M. (2003). Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology, 86, 85–89.

    Article  CAS  Google Scholar 

  2. Bouallagui, H., Touhami, Y., Cheikh, R. B., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40, 989–995.

    Article  CAS  Google Scholar 

  3. Garcia-Pena, E. I., Parameswaran, P., Kang, D. W., Canul-Chan, M., & Krajmalnik-Brown, R. (2011). Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresource Technology, 102, 9447–9455.

    Article  CAS  Google Scholar 

  4. Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., & Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Bioresource Technology, 144, 80–85.

    Article  CAS  Google Scholar 

  5. Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y., & Sun, Y. (2012). Pilot-scale anaerobic co-digestion of municipal biomass waste: focusing on biogas production and GHG reduction. Renewable Energy, 44, 463–468.

    Article  CAS  Google Scholar 

  6. Zhang, L., Lee, Y.-W., & Jahng, D. (2011). Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresource Technology, 102, 5048–5059.

    Article  CAS  Google Scholar 

  7. El-Fadel, M., Bou-Zeid, E., Chahine, W., & Alayli, B. (2002). Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Management, 22, 269–282.

    Article  CAS  Google Scholar 

  8. Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresource Technology, 101, 3816–3824.

    Article  CAS  Google Scholar 

  9. Nguyen, P. H. L., Kuruparan, P., & Visvanathan, C. (2007). Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresource Technology, 98, 380–387.

    Article  CAS  Google Scholar 

  10. Misi, S. N., & Forster, C. F. (2002). Semi-continuous anaerobic co-digestion of agro-wastes. Environmental Technology, 23, 445–451.

    Article  CAS  Google Scholar 

  11. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940.

    Article  CAS  Google Scholar 

  12. Zuo, Z., Wu, S., Zhang, W., & Dong, R. (2013). Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresource Technology, 146, 556–561.

    Article  CAS  Google Scholar 

  13. Zhou, Y., Takaoka, M., Wang, W., Liu, X., & Oshita, K. (2013). Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China. Journal of Bioscience and Bioengineering, 116, 101–105.

    Article  CAS  Google Scholar 

  14. Liu, X., Wang, W., Gao, X., Zhou, Y., & Shen, R. (2012). Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management, 32, 249–255.

    Article  Google Scholar 

  15. Ruggeri, B., Malave, A. C. L., Bernardi, M., & Fino, D. (2013). Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production. Waste Management, 33, 2225–2233.

    Article  CAS  Google Scholar 

  16. Gunaseelan, V. N. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass & Bioenergy, 26, 389–399.

    Article  CAS  Google Scholar 

  17. Ferrer, P., Cambra-Lopez, M., Cerisuelo, A., Penaranda, D. S., & Moset, V. (2014). The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: effect of substrate type and inclusion level. Waste Management, 34, 196–203.

    Article  CAS  Google Scholar 

  18. Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J. P., & Delgenes, J. P. (2014). Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Management, 34, 875–885.

    Article  CAS  Google Scholar 

  19. Bouallagui, H., Lahdheb, H., Ben Romdan, E., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90, 1844–1849.

    Article  CAS  Google Scholar 

  20. Bouallagui, H., Rachdi, B., Gannoun, H., & Hamdi, M. (2009). Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation, 20, 401–409.

    Article  CAS  Google Scholar 

  21. Habiba, L., Hassib, B., & Moktar, H. (2009). Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresource Technology, 100, 1555–1560.

    Article  CAS  Google Scholar 

  22. Wang, C., Zuo, J., Chen, X., Xing, W., Xing, L., Li, P., Lu, X., & Li, C. (2014). Microbial community structures in an integrated two-phase anaerobic bioreactor fed by fruit vegetable wastes and wheat straw. Journal of Environmental Sciences, 26, 2484–2492.

    Article  Google Scholar 

  23. Di Maria, F., Sordi, A., Cirulli, G., Gigliotti, G., Massaccesi, L., & Cucina, M. (2014). Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity. Waste Management, 34, 1603–1608.

    Article  CAS  Google Scholar 

  24. Di Maria, F., & Barratta, M. (2015). Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: internal environment of digester and methanogenic pathway. Waste Management, 43, 130–136.

    Article  CAS  Google Scholar 

  25. Wang, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., & Li, X. (2014). Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies. Waste Management, 34, 2627–2633.

    Article  CAS  Google Scholar 

  26. Ros, M., Franke-Whittle, I. H., Morales, A. B., Insam, H., Ayuso, M., & Pascual, J. A. (2013). Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste. Bioresource Technology, 136, 1–7.

    Article  CAS  Google Scholar 

  27. Yen, H.-W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98, 130–134.

    Article  CAS  Google Scholar 

  28. Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40, 3412–3418.

    Article  CAS  Google Scholar 

  29. Wang, Q. H., Kuninobu, M., Ogawa, H. I., & Kato, Y. (1999). Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass & Bioenergy, 16, 407–416.

    Article  CAS  Google Scholar 

  30. Boone, D. R., & Xun, L. Y. (1987). Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Applied and Environmental Microbiology, 53, 1589–1592.

    CAS  Google Scholar 

  31. Pullammanappallil, P. C., Chynoweth, D. P., Lyberatos, G., & Svoronos, S. A. (2001). Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid. Bioresource Technology, 78, 165–169.

    Article  CAS  Google Scholar 

  32. Agdag, O. N., & Sponza, D. T. (2007). Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. Journal of Hazardous Materials, 140, 75–85.

    Article  CAS  Google Scholar 

  33. Alatriste-Mondragon, F., Samar, P., Cox, H. H. J., Ahring, B. K., & Iranpour, R. (2006). Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature. Water Environment Research, 78, 607–636.

    Article  CAS  Google Scholar 

  34. Cabbai, V., Ballico, M., Aneggi, E., & Goi, D. (2013). BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management, 33, 1626–1632.

    Article  CAS  Google Scholar 

  35. Alkanok, G., Demirel, B., & Onay, T. T. (2014). Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Management, 34, 134–140.

    Article  CAS  Google Scholar 

  36. Yang, Y.-Q., Shen, D.-G., Li, N., Xu, D., Long, Y.-Y., & Lu, X.-Y. (2013). Co-digestion of kitchen waste and fruit-vegetable waste by two-phase anaerobic digestion. Environmental Science and Pollution Research, 20, 2162–2171.

    Article  CAS  Google Scholar 

  37. Smith, D. B., & Almquist, C. B. (2014). The anaerobic co-digestion of fruit and vegetable waste and horse manure mixtures in a bench-scale, two-phase anaerobic digestion system. Environmental Technology, 35, 859–867.

    Article  CAS  Google Scholar 

  38. Gomez, X., Cuetos, M. J., Cara, J., Moran, A., & Garcia, A. I. (2006). Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes—conditions for mixing and evaluation of the organic loading rate. Renewable Energy, 31, 2017–2024.

    Article  CAS  Google Scholar 

  39. Forster-Carneiro, T., Perez, M., & Romero, L. I. (2008). Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresource Technology, 99, 6763–6770.

    Article  CAS  Google Scholar 

  40. Wu, Y., Wang, C., Liu, X., Ma, H., Wu, J., Zuo, J., & Wang, K. (2016). A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment. Bioresource Technology, 211, 16–23.

    Article  CAS  Google Scholar 

  41. Fdez-Gueelfo, L. A., Alvarez-Gallego, C., Sales Marquez, D., & Romero Garcia, L. I. (2010). Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum. Bioresource Technology, 101, 9031–9039.

    Article  CAS  Google Scholar 

  42. Wu, Y., Ma, H., Zheng, M., & Wang, K. (2015). Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresource Technology, 191, 53–58.

    Article  CAS  Google Scholar 

  43. Tubtong, C., Towprayoon, S., Connor, M. A., Chaiprasert, P., & Nopharatana, A. (2010). Effect of recirculation rate on methane production and SEBAR system performance using active stage digester. Waste Management & Research, 28, 818–827.

    Article  CAS  Google Scholar 

  44. Gulhane, M., Khardenavis, A. A., Karia, S., Pandit, P., Kanade, G. S., Lokhande, S., Vaidya, A. N., & Purohit, H. J. (2016). Biomethanation of vegetable market waste in an anaerobic baffled reactor: effect of effluent recirculation and carbon mass balance analysis. Bioresource Technology, 215, 100–109.

    Article  CAS  Google Scholar 

  45. Khardenavis, A. A., Wang, J. Y., Ng, W. J., & Purohit, H. J. (2013). Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation. Environmental Technology, 34, 2085–2097.

    Article  Google Scholar 

  46. Wang, J. Y., Zhang, H., Stabnikova, O., & Tay, J. H. (2005). Comparison of lab-scale and pilot-scale hybrid anaerobic solid-liquid systems operated in batch and semi-continuous modes. Process Biochemistry, 40, 3580–3586.

    Article  CAS  Google Scholar 

  47. Chanakya, H. N., Ramachandra, T. V., Guruprasad, M., & Devi, V. (2007). Micro-treatment options for components of organic fraction of MSW in residential areas. Environmental Monitoring and Assessment, 135, 129–139.

    Article  CAS  Google Scholar 

  48. Chanakya, H. N., Ramachandra, T. V., & Vijayachamundeeswari, M. (2007). Resource recovery potential from secondary components of segregated municipal solid wastes. Environmental Monitoring and Assessment, 135, 119–127.

    Article  CAS  Google Scholar 

  49. Yabu, H., Sakai, C., Fujiwara, T., Nishio, N., & Nakashimada, Y. (2011). Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. Journal of Bioscience and Bioengineering, 111, 312–319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Li.

Ethics declarations

Funding

This work was supported by the National Science and Technology Pillar Program (2015BAD21B03), the Special Fund for Agro-scientific Research in the Public Interest (201403019) and the Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Kong, CX., Mei, ZL. et al. A Review of the Anaerobic Digestion of Fruit and Vegetable Waste. Appl Biochem Biotechnol 183, 906–922 (2017). https://doi.org/10.1007/s12010-017-2472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2472-x

Keywords

Navigation