Skip to main content
Log in

Does Sugarcane Straw Removal Change the Abundance of Soil Microbes?

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Growing global demand for bioenergies has raised the interest in using sugarcane crop residues (straw) as feedstock to produce cellulosic ethanol and/or bioelectricity in Brazil. However, indiscriminate straw removal may deplete soil quality, particularly induced by its negative effects on soil microbial communities. A 2-year field study was conducted in soils classified as Oxisol (site 1) and Ultisol (site 2) in southeastern Brazil. The experiment started after plant cane cycle, establishing three straw removal rates (treatments), as follows: total removal, moderated removal, and no removal of sugarcane straw from the field. The amount of straw left on the soil surface and removed in the treatments varied according to the straw yield of each year and location. Soil samples were collected at 0–5- and 5–10-cm layers. The total abundance of bacteria, archaea, and fungi were analyzed by real-time quantitative polymerase chain reaction (qPCR). Bulk density, pH, base saturation, cation exchange capacity, phosphorus (P), and total organic C and soil microbial biomass C (MBC) were also measured. The soil chemical results indicate that the Oxisol presents higher inherent soil fertility compared with the Ultisol. In the first year, the straw had a different significant effect for bacterial and archaeal abundance in both soils and for fungi in the Oxisol site. In the second year, the numbers of gene copies of bacteria, archaea, and fungi in the 0–5-cm layer were higher under moderated and no removal when compared with those under total removal, regardless of site. The MBC decreased significantly under total removal of straw at the Ultisol site. Moderate straw removal has no significant effect on the abundance of soil microbes, but total straw removal may induce sharp reductions (from 23 to 54%) on microbial abundance. Soil microbes are a sensitive indicator to assess soil changes induced by crop residue management and should be taken into account for defining sugarcane straw management towards a sustainable bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Companhia Nacional de Abastecimento – Conab (2019) Acompanhamento da safra brasileira de cana-de-açúcar. v. 6, Safra 2019/2020, n. 1, Primeiro Levantamento, Brasília. https://www.conab.gov.br/info-agro/safras/cana. Accessed 27 May 2019

  2. Landell MGA, Scarpari MS, Xavier MA, Anjos IA, Baptista AS, Aguiar CL et al (2013) Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Sci Agric 70:299–304. https://doi.org/10.1590/S0103-90162013000500003

    Article  Google Scholar 

  3. Carvalho JLN, Nogueirol RC, Menandro LMS, Bordonal RO, Borges CD, Cantarella H, Franco HCJ (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9(7):1181–1195. https://doi.org/10.1111/gcbb.12410

    Article  CAS  Google Scholar 

  4. Cherubin MR, Oliveira DMS, Feigl BJ, Pimentel LG, Lisboa IP, Gmach MR, Varanda LL, Morais MC, Satiro LS, Popin GV, Paiva SR, Santos AKB, Vasconcelos ALS, Melo PLA, Cerri CEP, Cerri CC (2018) Crop residue harvest for bioenergy production and its environmental on soil functioning and plant growth: a review. Sci Agric 75(3):255–272. https://doi.org/10.1590/1678-992X-2016-0459

    Article  CAS  Google Scholar 

  5. Satiro LS, Cherubin MR, Safanelli JL, Lisboa IP, Rocha Junior PR, Cerri CEP, Cerri CC (2017) Sugarcane straw removal effects on Ultisoils and Oxisols in south-central Brazil. Geoderma Regional 11:86–95. https://doi.org/10.1016/j.geodrs.2017.10.005

    Article  Google Scholar 

  6. Sousa Junior JGA, Cherubin MR, Oliveira BG, Cerri CEP, Cerri CC, Feigl BJ (2018) Three-year soil carbon and nitrogen responses to sugarcane straw management. Bioenerg Res 11:249–261. https://doi.org/10.1007/s12155-017-9892-x

    Article  CAS  Google Scholar 

  7. Corrêa STR, Barbosa LC, Menandro LMS, Scarpare FV, Reichardt K, de Moraes LO, Hernandes TAD, Franco HCJ, Carvalho JLN (2019) Straw removal effects on soil water dynamics, soil temperature, and sugarcane yield in South-Central Brazil. Bioenerg Res:1–15. https://doi.org/10.1007/s12155-019-09981-w

  8. Castioni GA, Cherubin MR, Menandro LMS, Sanches GM, Bordonal BO, Barbosa LC, Franco HCJ, Carvalho JLN (2018) Soil physical quality response to sugarcane straw removal in Brazil: a multiapproach assessment. Soil Tillage Res 184:301–309. https://doi.org/10.1016/j.still.2018.08.007

    Article  Google Scholar 

  9. Fortes C, Trivelin PCO, Vitti AC (2012) Long-term decomposition of sugarcane harvest residues in São Paulo state, Brazil. Biomass Bioenergy 42:189–198. https://doi.org/10.1016/j.biombioe.2012.03.011

    Article  CAS  Google Scholar 

  10. Lisboa IP, Cherubin MR, Lima RP, Cerri CC, Satiro LS, Wienhold BJ, Schmer MR, Jin VL, Cerri CEP (2018) Sugarcane straw removal effects on plant growth and stalk yield. Ind Crop Prod 111:794–806. https://doi.org/10.1016/j.indcrop.2017.11.049

    Article  Google Scholar 

  11. Zhao M, Xue K, Wang F, Liu S, Bai S, Sun B, Zhou J, Yang Y (2014) Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME J 8:2045–2055. https://doi.org/10.1038/ismej.2014.46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchu MYH, dos Santos CA, Alves PRL, de Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289. https://doi.org/10.1590/S0103-90162013000400009

    Article  Google Scholar 

  13. Suleiman AKA, Lourenço KS, Pitombo LM, Mendes LW, Roesch LFW, Carmo JB, Cantarella H, Kuramae EK (2018) Recycling organic residues in agriculture impacts soil-borne microbial community structure, function and N2O emissions. Sci Total Environ 631-632:1089–1099. https://doi.org/10.1016/j.scitotenv.2018.03.116

    Article  PubMed  CAS  Google Scholar 

  14. Pimentel LG, Gumiere T, Oliveira DMS, Cherubin MR, Andreote FD, Cerri CEP, Cerri CC (2019) Soil bacterial community changes in sugarcane fields under straw removal in Brazil. Bioenerg Res 1:13. https://doi.org/10.1007/s12155-019-10010-z

    Article  CAS  Google Scholar 

  15. Rachid CTCC, Pires CA, Leite DCA, Coutinho HLC, Peixoto RS, Posado AS, Salton J, Zanatta JA, Mercante FM, Angelini GAR, Balieiro FC (2016) Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment. Braz J Microbiol 47:322–326. https://doi.org/10.1016/j.bjm.2016.01.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JSM, Sparovek G (2013) Koppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  17. Soil Survey Staff (2014) Keys of soil taxonomy. 12th ed. DC: USDA- Natural Resources Conservation Service, Washington

  18. Lisboa IP, Cherubin MR, Cerri CC, Cerri DGP, Cerri CEP (2017) Guidelines for the recovery of sugarcane straw from the field during harvesting. Biomass Bioenergy 96:69–74. https://doi.org/10.1016/j.biombioe.2016.11.008

    Article  Google Scholar 

  19. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6

    Article  CAS  Google Scholar 

  20. Sparling GP, West AW (1988) A direct extraction method to estimate soil microbial-c - calibration insitu using microbial respiration and C-14-labeled cells. Soil Biol Biochem 20:337–343. https://doi.org/10.1016/0038-0717(90)90104-8

    Article  CAS  Google Scholar 

  21. Mendiburu F, Simon R (2015) Agricolae - ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ PrePrints 3:e1404v1. https://doi.org/10.7287/peerj.preprints.1404v1

    Article  Google Scholar 

  22. Cerri CC, Galdos MV, Maia SMF, Bernoux M, Feigl BJ, Powlson D, Cerri CEP (2011) Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. Eur J Soil Sci 62:23–28. https://doi.org/10.1111/j.1365-2389.2010.01315.x

    Article  CAS  Google Scholar 

  23. Rachid CTCC, Piccolo MC, Leite DCA, Balieiro F, Coutinho HLC, van Elsas JD, Peixoto RS, Rosado AS (2012) Physical-chemical and microbiological changes in Cerrado soil under differing sugarcane harvest management systems. BMC Microbiol 12:170. https://doi.org/10.1186/1471-2180-12-170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Souza RA, Telles TS, Machado W, Hungria M, Filho JT, Guimarães MF (2012) Effects of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. Agric Ecosyst Environ 155:1–6. https://doi.org/10.1016/j.agee.2012.03.012

    Article  CAS  Google Scholar 

  25. Navarrete AA, Diniz TR, Braga LPP, Silva GGZ, Franchini JC, Rosseto R, Edwards RA, Tsai SM (2015) Multi-analytical approach reveals potential microbial indicators in soil for sugarcane model systems. PLoS One 10:1–19. https://doi.org/10.1371/journal.pone.0129765

    Article  CAS  Google Scholar 

  26. Blanco-Canqui H, Shapiro CA, Wortmann CS, Drijber RA, Mamo M, Shaver TM, Ferguson RB (2013) Soil organic carbon: the value to soil properties. J Soil Water Conserv 68:129A–134A. https://doi.org/10.2489/jswc.68.5.129A

    Article  Google Scholar 

  27. Mendes IC, Souza LM, Sousa DMG, Lopes AAC, Reis FB, Lacerda MPC, Malaquias JV (2019) Critical limits for microbial indicators in tropical Oxisols at post-harvest: the FERTBIO soil sample concept. Appl Soil Ecol 139:85–93. https://doi.org/10.1016/j.apsoil.2019.02.025

    Article  Google Scholar 

  28. Raes J (2017) Crowdsourcing earth’s microbes. Nature 551:466–467. https://doi.org/10.1038/nature24756

    Article  CAS  Google Scholar 

  29. Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soils. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural systems. CAB International, Wallingford, pp 368–386

    Google Scholar 

  30. White PM Jr, Viator RP, Webber CL III, Eggleston G (2018) Potencial losses of soil nutrients and energy content on the complete removal of sugarcane leaf material as a biomass feedstock. Sugar Tech 20(1):40–49. https://doi.org/10.1007/s12355-017-0523-9

    Article  CAS  Google Scholar 

  31. Carvalho JLN, Menandro LMS, de Castro SGQ, Cherubin MR, Bordonal RO, Barbosa LC et al Multilocation straw removal effects on sugarcane yield in Shouth-Central Brazil. Bioener Res 1:17. https://doi.org/10.1007/s12155-019-10007-8

  32. Birnbaum C, Hopkins AJM, Fontaine JB, Enright NJ (2019) Soil fungal responses to experimental warming and drying in a Mediterranean shrubland. Sci Total Environ 683:524–536. https://doi.org/10.1016/j.scitotenv.2019.05.222

    Article  PubMed  CAS  Google Scholar 

  33. Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial commnunities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278

    Article  PubMed  CAS  Google Scholar 

  34. Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:5–20. https://doi.org/10.1007/s00374-003-0590-9

    Article  Google Scholar 

  35. Kaschuk G, Alberton O, Hungria M (2010) Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem 42:1–13. https://doi.org/10.1016/j.soilbio.2009.08.020

    Article  CAS  Google Scholar 

  36. Vitti AC, Trivelin PCO, Cantarella H, Franco HCJ, Faroni CE, Otto R, Trivelin MO, Tovajar JG (2008) Straw mineralization and root growth of sugar cane as related to nitrogen fertilization at planting. Revista Brasileira da Ciência do Solo 32:2757–2762. https://doi.org/10.1590/S0100-06832008000700020

    Article  CAS  Google Scholar 

  37. Martins Filho MV, Liccioti TT, Pereira GT, Marques Junior J, Sanches RB (2009) Perdas de solo e nutrientes por erosão num argissolo com resíduos vegetais de cana-de-açúcar. Engenharia Agrícola 29:8–18. https://doi.org/10.1590/1809-4430-eng.agric.v36n6p1063-1072/2016

    Article  Google Scholar 

  38. Abreu RRL, Lima SS, Oliveira NCR, Leite LFC (2014) Fauna edáfica sob diferentes níveis de palhada em cultivo de cana-de-açúcar. Pesquisa Agropecuária Tropical 44:409–416. https://doi.org/10.1590/S1983-40632014000400002

    Article  Google Scholar 

  39. Oliveira DMS, Williams S, Cerri CEP, Paustian K (2017) Predicting soil C changes over sugarcane expansion in Brazil using the DayCent model. GCB Bioenergy 9:1436–1446. https://doi.org/10.1111/gcbb.12427

    Article  CAS  Google Scholar 

  40. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120. https://doi.org/10.1128/AEM.71.7.4117-4120.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yu Y, Lee C, Hwang S (2005) Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci Technol 52:85–91. https://doi.org/10.2166/wst.2005.0502

    Article  PubMed  CAS  Google Scholar 

  42. van Elsas JD, Duarte GF, Keijzer-Wolters A, Smit E (2000) Analysis of the dynamics of fungal communities in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods 43:133–151. https://doi.org/10.1016/S0167-7012(00)00212-8

    Article  PubMed  Google Scholar 

Download references

Funding

The authors thank The Brazilian Development Bank (BNDES) and Raízen Energia S.A for funding our research (Project #14.0773.1). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. M.C.M thanks the CAPES for providing her master scholarship. M.R.C thanks the Fundação de Estudos Agrários “Luiz de Queiroz” (Project #67555) and São Paulo Research Foundation (FAPESP Process # 2018/09845-7). S.M.T. was sponsored by a CNPq Fellowship (CNPq #311008/2016-0). National Council for Scientific and Technological Development (CNPq #161296/2015-7, #427915/2016-3). São Paulo Research Foundation (FAPESP #2015/21893-9, #2016/23832-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maristela C. Morais.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This study is dedicated in memory of Carlos C. Cerri.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, M.C., Ferrari, B.M., Borges, C.D. et al. Does Sugarcane Straw Removal Change the Abundance of Soil Microbes?. Bioenerg. Res. 12, 901–908 (2019). https://doi.org/10.1007/s12155-019-10018-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10018-5

Keywords

Navigation