Skip to main content

Advertisement

Log in

Advances in the expression and function of Fyn in different human tumors

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The tyrosine kinase Fyn is a member of the SRC family of kinases, and its sustained activation is closely linked to tumor cell migration, proliferation, and cell metabolism. Recently, Fyn has been found to be expressed in various tumor tissues, and the expression and function of Fyn vary between tumors, with Fyn acting as an oncogene to promote proliferation and metastasis in some tumors. This article summarizes the recent studies on the role of Fyn in different human tumors, focusing on the role of Fyn in melanoma, breast cancer, glioma, lung cancer, and peripheral T-cell lymphoma in order to provide a basis for future research and targeted therapy in different human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors declare the availability of data analyzed in this study.

References

  1. Roskoski R Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res. 2015;94:9–25.

    Article  CAS  PubMed  Google Scholar 

  2. Sontag JM, Schuhmacher D, Taleski G, Jordan A, Khan S, Hoffman A, et al. A new paradigm for regulation of protein phosphatase 2A function via Src and Fyn kinase-mediated tyrosine phosphorylation. J Biol Chem. 2022;298(8):102248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 2016;157:52–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matrone C, Petrillo F, Nasso R, Ferretti G. Fyn tyrosine kinase as harmonizing factor in neuronal functions and dysfunctions. Int J Mol Sci. 2020;21(12):4444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saito YD, Jensen AR, Salgia R, Posadas EM. Fyn: a novel molecular target in cancer. Cancer. 2010;116(7):1629–37.

    Article  CAS  PubMed  Google Scholar 

  6. Goldsmith JF, Hall CG, Atkinson TP. Identification of an alternatively spliced isoform of the fyn tyrosine kinase. Biochem Biophys Res Commun. 2002;298(4):501–4.

    Article  CAS  PubMed  Google Scholar 

  7. Uddin MJ, Dorotea D, Pak ES, Ha H. Fyn kinase: a potential therapeutic target in acute kidney injury. Biomol Ther (Seoul). 2020;28(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  8. Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. J Transl Med. 2023;21(1):84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pucheta-Martínez E, Saladino G, Morando MA, Martinez-Torrecuadrada J, Lelli M, Sutto L, et al. An allosteric cross-talk between the activation loop and the ATP binding site regulates the activation of src kinase. Sci Rep. 2016;6:24235.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gonfloni S, Weijland A, Kretzschmar J, Superti-Furga G. Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src. Nat Struct Biol. 2000;7(4):281–6.

    Article  CAS  PubMed  Google Scholar 

  11. Elias D, Ditzel HJ. Fyn is an important molecule in cancer pathogenesis and drug resistance. Pharmacol Res. 2015;100:250–4.

    Article  CAS  PubMed  Google Scholar 

  12. Saginala K, Barsouk A, Aluru JS, Rawla P, Barsouk A. Epidemiology of Melanoma. Med Sci (Basel). 2021;9(4):63.

    CAS  PubMed  Google Scholar 

  13. Turner N, Ware O, Bosenberg M. Genetics of metastasis: melanoma and other cancers. Clin Exp Metastasis. 2018;35(5–6):379–91.

    Article  CAS  PubMed  Google Scholar 

  14. Leonardi GC, Falzone L, Salemi R, Zanghì A, Spandidos DA, Mccubrey JA, et al. Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol. 2018;52(4):1071–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang L, Long J, Li K, Zhang X, Chen X, Peng C. A novel chalcone derivative suppresses melanoma cell growth through targeting Fyn/Stat3 pathway. Cancer Cell Int. 2020;20:256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Huang Z, Guo Y, Xiao T, Tang L, Zhao S, et al. The phosphorylation of CD147 by Fyn plays a critical role for melanoma cells growth and metastasis. Oncogene. 2020;39(21):4183–97.

    Article  CAS  PubMed  Google Scholar 

  17. Wellbrock C, Schartl M. Activation of phosphatidylinositol 3-kinase by a complex of p59fyn and the receptor tyrosine kinase Xmrk is involved in malignant transformation of pigment cells. Eur J Biochem. 2000;267(12):3513–22.

    Article  CAS  PubMed  Google Scholar 

  18. Wellbrock C, Weisser C, Geissinger E, Troppmair J, Schartl M. Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J Biol Chem. 2002;277(8):6443–54.

    Article  CAS  PubMed  Google Scholar 

  19. Huang J, et al. Cooperative roles of Fyn and cortactin in cell migration of metastatic murine melanoma. J Biol Chem. 2003;278(48):48367–76.

    Article  CAS  PubMed  Google Scholar 

  20. Meierjohann S, Wende E, Kraiss A, Wellbrock C, Schartl M. The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions. Cancer Res. 2006;66(6):3145–52.

    Article  CAS  PubMed  Google Scholar 

  21. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84:106535.

    Article  CAS  PubMed  Google Scholar 

  22. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  23. Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26(7):1291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee EY, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol. 2010;2(10):a003236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ogunbolude Y, Dai C, Bagu ET, Goel RK, Miah S, MacAusland-Berg J, et al. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition. Oncotarget. 2017;8(68):113034–65.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kostic A, Lynch CD, Sheetz MP. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS ONE. 2009;4(7):e6361.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bagu ET, Miah S, Dai C, Spriggs T, Ogunbolude Y, Beaton E, et al. Repression of Fyn-related kinase in breast cancer cells is associated with promoter site-specific CpG methylation. Oncotarget. 2017;8(7):11442–59.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li L, Huang H, Zhu M, Wu J. Identification of hub genes and pathways of triple negative breast cancer by expression profiles analysis. Cancer Manag Res. 2021;13:2095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bando Y, Kobayashi T, Miyakami Y, Sumida S, Kakimoto T, Saijo Y, et al. Triple-negative breast cancer and basal-like subtype : Pathology and targeted therapy. J Med Invest. 2021;68(34):213–9.

    Article  PubMed  Google Scholar 

  31. Lee GH, Yoo KC, An Y, Lee HJ, Lee M, Uddin N, et al. FYN promotes mesenchymal phenotypes of basal type breast cancer cells through STAT5/NOTCH2 signaling node. Oncogene. 2018;37(14):1857–68.

    Article  CAS  PubMed  Google Scholar 

  32. Ma JH, Qin L, Li X. Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal. 2020;18(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Seok HJ, Choi YE, Choi JY, Yi JM, Kim EJ, Choi MY, et al. Novel miR-5088-5p promotes malignancy of breast cancer by inhibiting DBC2. Mol Ther Nucleic Acids. 2021;25:127–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wary KK, Mariotti A, Zurzolo C, Giancotti FG. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell. 1998;94(5):625–34.

    Article  CAS  PubMed  Google Scholar 

  35. Ha JR, Ahn R, Smith HW, Sabourin V, Hébert S, Cepeda Cañedo E, et al. Integration of distinct ShcA signaling complexes promotes breast tumor growth and tyrosine kinase inhibitor resistance. Mol Cancer Res. 2018;16(5):894–908.

    Article  CAS  PubMed  Google Scholar 

  36. Mayoral-Varo V, Calcabrini A, Sánchez-Bailón MP, Martín-Pérez J. miR205 inhibits stem cell renewal in SUM159PT breast cancer cells. PLoS ONE. 2017;12(11):e0188637.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev. 2017;31(19):1939–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang J, Lv X, Lu C, Ye X, Chen X, Fu J, et al. Prognostic factors of patients with Gliomas - an analysis on 335 patients with Glioblastoma and other forms of Gliomas. BMC Cancer. 2020;20(1):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poonan P, Agoni C, Ibrahim MAA, Soliman MES. Glioma-targeted therapeutics: computer-aided drug design prospective. Protein J. 2021;40(5):601–55.

    Article  CAS  PubMed  Google Scholar 

  40. Comba A, Dunn PJ, Argento AE, Kadiyala P, Ventosa M, Patel P, et al. Fyn tyrosine kinase, a downstream target of receptor tyrosine kinases, modulates antiglioma immune responses. Neuro Oncol. 2020;22(6):806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eskilsson E, Rosland GV, Talasila KM, Knappskog S, Keunen O, Sottoriva A, et al. EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. Neuro Oncol. 2016;18(12):1644–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahluwalia MS, de Groot J, Liu WM, Gladson CL. Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. Cancer Lett. 2010;298(2):139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu KV, Zhu S, Cvrljevic A, Huang TT, Sarkaria S, Ahkavan D, et al. Fyn and SRC are effectors of oncogenic epidermal growth factor receptor signaling in glioblastoma patients. Cancer Res. 2009;69(17):6889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim HS, Chang CY, Yoon HJ, Kim KS, Koh HS, Kim SS, et al. Glial TIM-3 modulates immune responses in the brain tumor microenvironment. Cancer Res. 2020;80(9):1833–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nat Rev Immunol. 2020;20(3):173–85.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang S, Sheng H, Zhang X, Qi Q, Chan CB, Li L, et al. Cellular energy stress induces AMPK-mediated regulation of glioblastoma cell proliferation by PIKE-A phosphorylation. Cell Death Dis. 2019;10(3):222.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jia W, Feng YI, Sanders AJ, Davies EL, Jiang WG. Phosphoinositide-3-kinase enhancers, PIKEs: their biological functions and roles in cancer. Anticancer Res. 2016;36(3):1103–9.

    CAS  PubMed  Google Scholar 

  48. Zhang S, Qi Q, Chan CB, Zhou W, Chen J, Luo HR, et al. Fyn-phosphorylated PIKE-A binds and inhibits AMPK signaling, blocking its tumor suppressive activity. Cell Death Differ. 2016;23(1):52–63.

    Article  PubMed  Google Scholar 

  49. Sun M, Sheng H, Wu T, Song J, Sun H, Wang Y, et al. PIKE-A promotes glioblastoma growth by driving PPP flux through increasing G6PD expression mediated by phosphorylation of STAT3. Biochem Pharmacol. 2021;192:114736.

    Article  CAS  PubMed  Google Scholar 

  50. Liu R, Li W, Tao B, Wang X, Yang Z, Zhang Y, et al. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat Commun. 2019;10(1):991.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jonna S, Subramaniam DS. Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): an update. Discov Med. 2019;27(148):167–70.

    PubMed  Google Scholar 

  52. Sun R, Meng X, Wang W, Liu B, Lv X, Yuan J, et al. Five genes may predict metastasis in non-small cell lung cancer using bioinformatics analysis. Oncol Lett. 2019;18(2):1723–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou LN, Li SC, Li XY, Ge H, Li HM. Identification of differential protein-coding gene expressions in early phase lung adenocarcinoma. Thorac Cancer. 2018;9(2):234–40.

    Article  CAS  PubMed  Google Scholar 

  54. Xue F, Jia Y, Zhao J. Overexpression of FYN suppresses the epithelial-to-mesenchymal transition through down-regulating PI3K/AKT pathway in lung adenocarcinoma. Surg Oncol. 2020;33:108–17.

    Article  PubMed  Google Scholar 

  55. Uekita T, Fujii S, Miyazawa Y, Hashiguchi A, Abe H, Sakamoto M, et al. Suppression of autophagy by CUB domain-containing protein 1 signaling is essential for anchorage-independent survival of lung cancer cells. Cancer Sci. 2013;104(7):865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim AN, Jeon WK, Lim KH, Lee HY, Kim WJ, Kim BC. Fyn mediates transforming growth factor-beta1-induced down-regulation of E-cadherin in human A549 lung cancer cells. Biochem Biophys Res Commun. 2011;407(1):181–4.

    Article  CAS  PubMed  Google Scholar 

  57. Martín P, Salas C, Provencio M, Abraira V, Bellas C. Heterogeneous expression of Src tyrosine kinases Lyn, Fyn and Syk in classical Hodgkin lymphoma: prognostic implications. Leuk Lymphoma. 2011;52(11):2162–8.

    Article  PubMed  Google Scholar 

  58. Doki N, Kitaura J, Uchida T, Inoue D, Kagiyama Y, Togami K, et al. Fyn is not essential for Bcr-Abl-induced leukemogenesis in mouse bone marrow transplantation models. Int J Hematol. 2012;95(2):167–75.

    Article  PubMed  Google Scholar 

  59. Vose J, Armitage J, Weisenburger D. International T-Cell Lymphoma. Project International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.

    Article  PubMed  Google Scholar 

  60. Palacios EH, Weiss A. Function of the src-family kinases, lck and Fyn. T-cell Develop Activa Oncog. 2004;23(48):7990–8000.

    CAS  Google Scholar 

  61. Moon CS, Reglero C, Cortes JR, Quinn SA, Alvarez S, Zhao J, et al. FYN-TRAF3IP2 induces NF-kappaB signaling-driven peripheral T cell lymphoma. Nat Cancer. 2021;2(1):98–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Laurenzana I, Caivano A, Trino S, De Luca L, La Rocca F, Simeon V, et al. A Pyrazolo[3,4-d]pyrimidine compound inhibits Fyn phosphorylation and induces apoptosis in natural killer cell leukemia. Oncotarget. 2016;7(40):65171–84.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chougule RA, Kazi JU, Rönnstrand L. FYN expression potentiates FLT3-ITD induced STAT5 signaling in acute myeloid leukemia. Oncotarget. 2016;7(9):9964–74.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yu J, Zhou Z, Wei Z, Wu J, OuYang J, Huang W, et al. FYN promotes gastric cancer metastasis by activating STAT3-mediated epithelial-mesenchymal transition. Transl Oncol. 2020;13(11):100841.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dong W, Sun SJ, Qin JJ, Liu GM. Fyn stimulates the progression of pancreatic cancer via Fyn-GluN2b-AKT axis. Eur Rev Med Pharmacol Sci. 2020;24(1):109–21.

    CAS  PubMed  Google Scholar 

  66. Lyu SC, Han DD, Li XL, Ma J, Wu Q, Dong HM, et al. Fyn knockdown inhibits migration and invasion in cholangiocarcinoma through the activated AMPK/mTOR signaling pathway. Oncol Lett. 2018;15(2):2085–90.

    PubMed  Google Scholar 

  67. Zheng J, Li H, Xu D, Zhu H. Upregulation of tyrosine kinase FYN in human thyroid carcinoma: role in modulating tumor cell proliferation, invasion, and migration. Cancer Biother Radiopharm. 2017;32(9):320–6.

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by a grant from the National Natural Science Foundation of China (No. 81272182) and the Key Project of Hunan Provincial Education Department (16K077).

Author information

Authors and Affiliations

Authors

Contributions

CL and SL: were involved in conceptualization, wrote the original draft, and were involved in visualization. YT: was involved in the conceptualization and provided supervision. Data authentication is not applicable. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunlian Tang.

Ethics declarations

Conflict of interest

There are no conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

No informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, S. & Tang, Y. Advances in the expression and function of Fyn in different human tumors. Clin Transl Oncol 25, 2852–2860 (2023). https://doi.org/10.1007/s12094-023-03167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03167-9

Keywords

Navigation