Skip to main content

Advertisement

Log in

Genetics of metastasis: melanoma and other cancers

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Melanoma is a malignant neoplasm of melanocytes that accounts for the majority of skin cancer deaths despite comprising less than 5% of all cutaneous malignancies. Its incidence has increased faster than that of any other cancer over the past half-century and the annual costs of treatment in the United States alone have risen rapidly. Although the majority of primary melanomas are cured with local excision, metastatic melanoma historically carries a grim prognosis, with a median survival of 9 months and a long-term survival rate of 10%. Given the urgent need to develop treatment strategies for metastatic melanoma and the explosion of genetic technologies over the past 20 years, there has been extensive research into the genetic alterations that cause melanocytes to become malignant. More recently, efforts have focused on the genetic changes that drive melanoma metastasis. This review aims to summarize the current knowledge of the genetics of primary cutaneous and ocular melanoma, the genetic changes associated with metastasis in melanoma and other cancer types, and non-genetic factors that may contribute to metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark WH Jr, Elder DE, Van Horn M (1986) The biologic forms of malignant melanoma. Hum Pathol 17(5):443–450

    Article  PubMed  Google Scholar 

  2. Arrington JH 3rd et al (1977) Plantar lentiginous melanoma: a distinctive variant of human cutaneous malignant melanoma. Am J Surg Pathol 1(2):131–143

    Article  PubMed  Google Scholar 

  3. Pandiani C et al (2017) Focus on cutaneous and uveal melanoma specificities. Genes Dev 31(8):724–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vazquez Vde L et al (2016) Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Res 26(2):93–99

    Article  PubMed  CAS  Google Scholar 

  5. Merkel EA, Gerami P (2017) Malignant melanoma of sun-protected sites: a review of clinical, histological, molecular features. Lab Invest 97(6):630–635

    Article  CAS  PubMed  Google Scholar 

  6. Kim JY et al (2014) Acral lentiginous melanoma: indolent subtype with long radial growth phase. Am J Dermatopathol 36(2):142–147

    Article  PubMed  Google Scholar 

  7. Barnhill RL et al (1996) Predicting five-year outcome for patients with cutaneous melanoma in a population-based study. Cancer 78(3):427–432

    Article  CAS  PubMed  Google Scholar 

  8. Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. New Engl J Med 353(20):2135–2147

    Article  CAS  PubMed  Google Scholar 

  9. Lawrence MS et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hodis E et al (2012) A landscape of driver mutations in melanoma. Cell 150(2):251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harris RS (2013) Cancer mutation signatures, DNA damage mechanisms, and potential clinical implications. Genome Med 5(9):87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cheng KC et al (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J Biol Chem 267(1):166–172

    Article  CAS  PubMed  Google Scholar 

  13. Network TCGA (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696

    Article  CAS  Google Scholar 

  14. Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  CAS  PubMed  Google Scholar 

  15. Avruch J et al (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155

    Article  CAS  PubMed  Google Scholar 

  16. Krauthammer M et al (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44(9):1006–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nikolaev SI et al (2011) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44(2):133–139

    Article  PubMed  CAS  Google Scholar 

  18. Bauer J et al (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127(1):179–182

    Article  CAS  PubMed  Google Scholar 

  19. Pollock PM et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33(1):19–20

    Article  CAS  PubMed  Google Scholar 

  20. Dhomen N et al (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4):294–303

    Article  CAS  PubMed  Google Scholar 

  21. Vredeveld LC et al (2012) Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 26(10):1055–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu H, Goel V, Haluska FG (2003) PTEN signaling pathways in melanoma. Oncogene 22(20):3113–3122

    Article  CAS  PubMed  Google Scholar 

  23. Mirmohammadsadegh A et al (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66(13):6546–6552

    Article  CAS  PubMed  Google Scholar 

  24. Shull AY et al (2012) Novel somatic mutations to PI3K pathway genes in metastatic melanoma. PLoS ONE 7(8):e43369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Davies MA et al (2008) A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 99(8):1265–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halaban R (2015) RAC1 and melanoma. Clin Ther 37(3):682–685

    Article  PubMed  Google Scholar 

  27. Vu HL et al (2015) RAC1 P29S regulates PD-L1 expression in melanoma. Pigment Cell Melanoma Res 28(5):590–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berger MF et al (2012) Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485(7399):502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bennett DC (2008) How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res 21(1):27–38

    Article  CAS  PubMed  Google Scholar 

  30. Shtivelman E et al (2014) Pathways and therapeutic targets in melanoma. Oncotarget 5(7):1701–1752

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reddy BY, Miller DM, Tsao H (2017) Somatic driver mutations in melanoma. Cancer 123(S11):2104–2117

    Article  PubMed  Google Scholar 

  32. Huang FW et al (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339(6122):957–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horn S et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961

    Article  CAS  PubMed  Google Scholar 

  34. Bell RJ et al (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348(6238):1036–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garraway LA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122

    Article  CAS  PubMed  Google Scholar 

  36. Hartman ML, Czyz M (2015) MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 72(7):1249–1260

    Article  CAS  PubMed  Google Scholar 

  37. Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20(16):2149–2182

    Article  CAS  PubMed  Google Scholar 

  38. Prickett TD et al (2014) Somatic mutation of GRIN2A in malignant melanoma results in loss of tumor suppressor activity via aberrant NMDAR complex formation. J Invest Dermatol 134(9):2390–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prickett TD et al (2011) Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet 43(11):1119–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neto A, Ceol CJ (2018) Melanoma-associated GRM3 variants dysregulate melanosome trafficking and cAMP signaling. Pigment Cell Melanoma Res 31(1):115–119

    Article  CAS  PubMed  Google Scholar 

  41. Gembarska A et al (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18(8):1239–1247

    Article  CAS  PubMed  Google Scholar 

  42. Stefansson B, Brautigan DL (2007) Protein phosphatase PP6 N terminal domain restricts G1 to S phase progression in human cancer cells. Cell Cycle 6(11):1386–1392

    Article  CAS  PubMed  Google Scholar 

  43. Valentin-Vega YA et al (2016) Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation. Sci Rep 6:25996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dutton-Regester K et al (2014) A highly recurrent RPS27 5′UTR mutation in melanoma. Oncotarget 5(10):2912–2917

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bastian BC et al (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58(10):2170–2175

    CAS  PubMed  Google Scholar 

  46. van den Bosch T et al. (2010) Genetics of uveal melanoma and cutaneous melanoma: two of a kind? Dermatol Res Pract 2010:360136

    PubMed  PubMed Central  Google Scholar 

  47. James AWM et al (2014) Cytogenetics of melanoma: a review. J Assoc Genet Technol 40(4):209–218

    Google Scholar 

  48. Hayward NK et al (2017) Whole-genome landscapes of major melanoma subtypes. Nature 545(7653):175–180

    Article  CAS  PubMed  Google Scholar 

  49. Bastian BC et al (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60(7):1968–1973

    CAS  PubMed  Google Scholar 

  50. Furney SJ et al (2014) The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res 27(5):835–838

    Article  CAS  PubMed  Google Scholar 

  51. Kong Y et al (2017) Frequent genetic aberrations in the CDK4 pathway in acral melanoma indicate the potential for CDK4/6 inhibitors in targeted therapy. Clin Cancer Res 23(22):6946–6957

    Article  CAS  PubMed  Google Scholar 

  52. Curtin JA et al (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24(26):4340–4346

    Article  CAS  PubMed  Google Scholar 

  53. Woodman SE, Davies MA (2010) Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol 80(5):568–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dumaz N et al (2015) Driver KIT mutations in melanoma cluster in four hotspots. Melanoma Res 25(1):88–90

    Article  CAS  PubMed  Google Scholar 

  55. Fukuda R et al (2001) Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern Med 40(4):301–303

    Article  CAS  PubMed  Google Scholar 

  56. Dai J et al (2013) Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. Clin Cancer Res 19(24):6935–6942

    Article  CAS  PubMed  Google Scholar 

  57. Board R, Jayson GC (2005) Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Update 8(1–2):75–83

    Article  CAS  Google Scholar 

  58. Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10(2):153–163

    Article  CAS  PubMed  Google Scholar 

  59. Yan J et al (2018) Analysis of NRAS gain in 657 patients with melanoma and evaluation of its sensitivity to a MEK inhibitor. Eur J Cancer 89:90–101

    Article  CAS  PubMed  Google Scholar 

  60. Turajlic S et al (2012) Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res 22(2):196–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Diaz A et al (2014) TERT and AURKA gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization. J Mol Diagn 16(2):198–206

    Article  CAS  PubMed  Google Scholar 

  62. Liau JY et al (2014) TERT promoter mutation is uncommon in acral lentiginous melanoma. J Cutan Pathol 41(6):504–508

    Article  PubMed  Google Scholar 

  63. Jovanovic P et al (2013) Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 6(7):1230–1244

    PubMed  PubMed Central  Google Scholar 

  64. Helgadottir H, Hoiom V (2016) The genetics of uveal melanoma: current insights. Appl Clin Genet 9:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Griewank KG et al (2013) Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 19(12):3143–3152

    Article  CAS  PubMed  Google Scholar 

  66. Testa U, Castelli G, Pelosi E (2017) Melanoma: genetic abnormalities, tumor progression, clonal evolution and tumor initiating cells. Med Sci 5(4):28

    Google Scholar 

  67. Van Raamsdonk CD et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602

    Article  PubMed  CAS  Google Scholar 

  68. Van Raamsdonk CD et al (2010) Mutations in GNA11 in uveal melanoma. New Engl J Med 363(23):2191–2199

    Article  PubMed  Google Scholar 

  69. Feng X et al (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25(6):831–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moore AR et al (2016) Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat Genet 48(6):675–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mong S et al (1988) Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells. J Pharmacol Exp Ther 244(2):508–515

    CAS  PubMed  Google Scholar 

  72. Johansson P et al (2016) Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 7(4):4624–4631

    Article  PubMed  Google Scholar 

  73. Harbour JW et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330(6009):1410–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Johnson CP et al (2017) Systematic genomic and translational efficiency studies of uveal melanoma. PLoS ONE 12(6):e0178189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ismail IH et al (2014) Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74(16):4282–4294

    Article  CAS  PubMed  Google Scholar 

  76. Matatall KA et al (2013) BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma. BMC Cancer 13:371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Xu J et al (2014) Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Res 74(16):4388–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin M et al (2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45(8):933–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. van den Bosch T et al (2012) Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Invest Ophthalmol Vis Sci 53(6):2668–2674

    Article  PubMed  CAS  Google Scholar 

  80. de Snoo FA, Hayward NK (2005) Cutaneous melanoma susceptibility and progression genes. Cancer Lett 230(2):153–186

    Article  PubMed  CAS  Google Scholar 

  81. Hussussian CJ et al (1994) Germline p16 mutations in familial melanoma. Nat Genet 8(1):15–21

    Article  CAS  PubMed  Google Scholar 

  82. Zuo L et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99

    Article  CAS  PubMed  Google Scholar 

  83. Fletcher O et al (2004) Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst 96(5):357–363

    Article  PubMed  Google Scholar 

  84. Wiesner T et al (2011) Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet 43(10):1018–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin M et al (2017) Common, germline genetic variations in the novel tumor suppressor BAP1 and risk of developing different types of cancer. Oncotarget 8(43):74936–74946

    Article  PubMed  PubMed Central  Google Scholar 

  86. Aoude LG et al (2015) Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 28(2):148–160

    Article  CAS  PubMed  Google Scholar 

  87. Cronin JC et al (2009) Frequent mutations in the MITF pathway in melanoma. Pigment Cell Melanoma Res 22(4):435–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bertolotto C et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98

    Article  CAS  PubMed  Google Scholar 

  89. Yokoyama S et al (2011) A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 480(7375):99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bertolotto C et al (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142(3):827–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cao J et al (2013) MC1R is a potent regulator of PTEN after UV exposure in melanocytes. Mol Cell 51(4):409–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vajdic C et al (2003) Ocular melanoma is not associated with CDKN2A or MC1R variants–a population-based study. Melanoma Res 13(4):409–413

    Article  CAS  PubMed  Google Scholar 

  93. Fidler IJ (2011) The pathogenesis of cancer metastasis: the ‘seed and soil’. hypothesis revisited. Int J Cancer 3:453

    Google Scholar 

  94. Bissell M (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liotta LA (2003) Cancer’s deadly signature. Nat Genet 33:10

    Article  CAS  PubMed  Google Scholar 

  96. Woodhouse EC (1997) General mechanisms of metastasis. Cancer 80:1529

    Article  CAS  PubMed  Google Scholar 

  97. Kabbarah O et al (2010) Integrative genome comparison of primary and metastatic melanomas. PLoS ONE 5(5):e10770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Natali PG et al (1993) Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 68(4):746–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schmidt H et al (1999) Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer 25(3):205–211

    Article  CAS  PubMed  Google Scholar 

  100. Ubagai T et al (2001) Comparative genomic hybridization analysis suggests a gain of chromosome 7p associated with lymph node metastasis in non-small cell lung cancer. Oncol Rep 8(1):83–88

    CAS  PubMed  Google Scholar 

  101. Yan J, Huang Q (2012) Genomics screens for metastasis genes. Cancer Metastasis Rev 31(3–4):419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim M et al (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125(7):1269–1281

    Article  CAS  PubMed  Google Scholar 

  103. Timar J, Gyorffy B, Raso E (2010) Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis 27(6):371–387

    Article  CAS  PubMed  Google Scholar 

  104. Rakosy Z et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121(8):1729–1737

    Article  CAS  PubMed  Google Scholar 

  105. Udart M et al (2001) Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia 3(3):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding L et al (2014) Clonal architectures and driver mutations in metastatic melanomas. PLoS ONE 9(11):e111153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gartner JJ et al (2012) Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genom 13:505

    Article  CAS  Google Scholar 

  108. Colombino M et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30(20):2522–2529

    Article  PubMed  Google Scholar 

  109. Jakob JA et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118(16):4014–4023

    Article  CAS  PubMed  Google Scholar 

  110. Kotani M et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636

    Article  CAS  PubMed  Google Scholar 

  111. Onken MD et al (2012) Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology 119(8):1596–1603

    Article  PubMed  Google Scholar 

  112. Field MG et al (2018) Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat Commun 9(1):116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Bakalian S et al (2008) Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin Cancer Res 14(4):951–956

    Article  CAS  PubMed  Google Scholar 

  114. Hu M (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13(5):394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Giampieri S (2009) Localized and reversible TGFβ signaling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11:1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Padua D (2008) TGF-beta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133(1):66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584

    Article  CAS  PubMed  Google Scholar 

  118. Logothetis CJ (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21

    Article  CAS  PubMed  Google Scholar 

  119. Kang Y (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537

    Article  CAS  PubMed  Google Scholar 

  120. Sethi N (2011) Tumor-derived jagged1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kang Y (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102(39):13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yin JJ (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Minn AJ (2005) Genes that mediate breast cancer metastasis to lung. Nature 436: 518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gupta GP (2006) Cancer metastasis: building a framework. Cell 127(4):679

    Article  CAS  PubMed  Google Scholar 

  125. Luo JL (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297

    Article  CAS  PubMed  Google Scholar 

  126. Siegel PM (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Davidson B (2004) Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients: a novel model for tumour progression. Clin Cancer Res 10(21):7335

    Article  CAS  PubMed  Google Scholar 

  128. Hess KR (2006) Metastatic patterns in adenocarcinoma. Cancer 106(7):1624

    Article  PubMed  Google Scholar 

  129. Tabariès S (2011) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 32:1318

    Article  CAS  Google Scholar 

  130. Winquist E (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systematic review from the Cancer Care Ontario Program in Evidence-based Care’s Genitourinary Cancer Disease Site Group. BMC Cancer 6:112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Bubendorf L (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31(5):578

    Article  CAS  PubMed  Google Scholar 

  132. Mimeault M (2011) Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 17:9

    Article  CAS  Google Scholar 

  133. Mimeault M (2006) Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Carcinogenesis 27(1):1

    Article  CAS  PubMed  Google Scholar 

  134. Mimeault M (2008) Prospective identification of tumorigenic prostate cancer stem cells. Endocr Rev 29(2):234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Harada S (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349

    Article  CAS  PubMed  Google Scholar 

  136. Faltermeier C (2016) Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci USA 113(2):E172

    Article  CAS  PubMed  Google Scholar 

  137. Siegel RL (2015) Cancer statistics. CA: Cancer J Clin 65(1):5

    Google Scholar 

  138. Nguyen DX (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274

    Article  CAS  PubMed  Google Scholar 

  139. Popper HH (2016) Progression and metastasis of lung cancer. Caner Metastasis Rev 35:75

    Article  CAS  Google Scholar 

  140. Yang J (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927

    Article  CAS  PubMed  Google Scholar 

  141. Xie L (2013) Genome-wide identification of bone metastasis-related microRNAs in lung adenocarcinoma by high-throughput sequencing. PLoS ONE 8(4):e61212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rao S (2017) RANK requires energy homoeostasis in lung cancer cells and drives primary lung cancer. Genes 31(20):2099

    Article  CAS  Google Scholar 

  143. Vicent S (2008) A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Can Res 68(7):2275

    Article  CAS  Google Scholar 

  144. Preusser M (2014) High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer 83(1):83

    Article  PubMed  Google Scholar 

  145. Pukrop T (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58(12):1477

    Article  PubMed  Google Scholar 

  146. Wang L (2013) Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS ONE 8(12):e80933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Qiu M et al. (2015) Pattern of distant metastases in colorectal cancer: a SEER based study. Oncotarget 6:38658–38666

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cook AD (2005) Surgical resection of primary tumors in patients who present with stage IV colorectal cancer: an analysis of surveillance, epidemiology, and end results data, 1988 to 2000. Ann Sure Oncol 12(8):637

    Article  Google Scholar 

  149. Sun L (2011) P-cadherin promotes liver metastasis and is associated with poor prognosis in colon cancer. Am J Pathol 179(1):380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hansen IO (2012) Possible better long-term survival in left versus right-sided colon cancer: a systematic review. Dan Med J 59(6):A4444

    PubMed  Google Scholar 

  151. Benedix F (2010) Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53(1):57

    Article  PubMed  Google Scholar 

  152. Iino H (1994) Molecular genetics for clinical management of colorectal carcinoma. 17p, 18q, and 22q loss of heterozygosity and decreased DCC expression are correlated with the metastatic potential. Cancer 73(5):1324

    Article  CAS  PubMed  Google Scholar 

  153. Ookawa K (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Cancer 53(3):382

    CAS  Google Scholar 

  154. Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9(9):317

    Article  CAS  PubMed  Google Scholar 

  155. Dolled-Filhart M (2006) Quantitative in situ analysis of β-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Can Res 66(10):5487

    Article  CAS  Google Scholar 

  156. Chao Y (2014) Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 29(1):39

    Article  CAS  Google Scholar 

  157. Adams GN (2015) Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Can Res 75(19):4235

    Article  CAS  Google Scholar 

  158. Turajlic S, Swanton C (2016) Metastasis as an evolutionary process. Science 352(6282):169–175

    Article  CAS  PubMed  Google Scholar 

  159. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability: an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228

    Article  CAS  PubMed  Google Scholar 

  160. Brannon AR et al (2014) Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 15(8):454

    Article  PubMed  PubMed Central  Google Scholar 

  161. Martincorena I et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sanborn JZ et al (2015) Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci USA 112(35):10995–11000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Park YJ (2011) Genome-wide epigenetic modifications in cancer. Progress Drug Res 67:25–49

    CAS  Google Scholar 

  165. Metri R et al (2017) Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach. Sci Rep 7(1):17314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Shen SS et al (2003) Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol 30(9):539–547

    Article  PubMed  Google Scholar 

  167. Isabel Zhu Y, Fitzpatrick JE (2006) Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol 33(1):33–37

    Article  CAS  PubMed  Google Scholar 

  168. Del C Velasco-Herrera M et al (2017) Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Mol Oncol 12(2):239–255

    Article  CAS  Google Scholar 

  169. Lian CG et al (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150(6):1135–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Boissan M, Lacombe ML (2012) NM23, an example of a metastasis suppressor gene. Bull Cancer 99(4):431–440

    Article  CAS  PubMed  Google Scholar 

  171. Clark EA et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535

    Article  CAS  PubMed  Google Scholar 

  172. Li J et al (2011) Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene 30(8):896–906

    Article  PubMed  CAS  Google Scholar 

  173. Achyut BR (2013) Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet 9(2):e1003251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pogribny IP (2013) DNA methylome alterations in chemical carcinogenesis. Cancer Lett 334(1):39

    Article  CAS  PubMed  Google Scholar 

  175. Gould CM (2014) Regulation of invadopodia by the tumor microenvironment. Cell Adhes Migr 8(3):226

    Article  Google Scholar 

  176. Weber CE (2012) The tumor microenvironment. Surg Oncol 21(3):172

    Article  PubMed  Google Scholar 

  177. Zamarron BF (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7(5):651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Spaeth E (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15(10):730

    Article  CAS  PubMed  Google Scholar 

  179. Hanahan D (2011) Hallmarks of cancer: the next generation. Cell 144(5):646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

NT’s contribution to this publication was made possible by CTSA Grant Number TL1 TR001864 from the National Center for Advancing Translational Science (NCATS), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Bosenberg.

Ethics declarations

Conflict of interest

MB serves as a consultant for Eli Lilly and Company. NT and OW declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Presented at the 7th International Cancer Metastasis Symposium in San Francisco, CA from April 20–22, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, N., Ware, O. & Bosenberg, M. Genetics of metastasis: melanoma and other cancers. Clin Exp Metastasis 35, 379–391 (2018). https://doi.org/10.1007/s10585-018-9893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9893-y

Keywords

Navigation