Skip to main content

Advertisement

Log in

Functional roles of long noncoding RNA MALAT1 in gynecologic cancers

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Gynecologic cancers are reproductive disorders characterized by pelvic pain and infertility. The identification of new predictive markers and therapeutic targets for the treatment of gynecologic cancers is urgently necessary. One of the recent successes in gynecologic cancers research is identifying the role of signaling pathways in the pathogenesis of the disease. Recent experiments showed long noncoding RNAs (lncRNA) can be novel therapeutic approaches for the diagnosis and treatment of gynecologic cancers. LncRNA are transcribed RNA molecules that play pivotal roles in multiple biological processes by regulating the different steps of gene expression. Metastasis‐associated lung adenocarcinoma transcript‐1 (MALAT1) is a well-known lncRNA that plays functional roles in gene expression, RNA processing, and epigenetic regulation. High expression of MALAT1 is closely related to numerous human diseases. It is generally believed that MALAT1 expression is associated with cancer cell growth, autophagy, invasion, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) could contribute to the pathogenesis of gynecologic cancers. In this review, we will summarize functional roles of MALAT1 in the most common gynecologic cancers, including endometrium, breast, ovary, and cervix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AMPK:

5'-AMP‑activated protein kinase

CDK2:

Cyclin dependent kinase 2

CREB1:

Cyclic AMP response element-binding protein 1

DIE:

Deep infiltrating endometriosis

EEC:

Endometrioid endometrial carcinoma

EMs:

Endometriosis

EMT:

Epithelial–mesenchymal transition

ERK:

Extracellular signal-regulated kinase

E2:

17β-Estradiol

GCs:

Granulosa cells

HESCs:

Endometrial stromal cells

HCN:

Hepcarcin

HIF‐1α:

Hypoxia‐inducible factor‐1α

LC3:

Microtubule‑associated protein 1A/1B‑light chain 3

LncRNA:

Long non-coding RNAs

MALAT1:

Metastasis‐associated lung adenocarcinoma transcript‐1

MAPK:

Mitogen-activated protein kinase

mascRNA:

MALAT1-associated small cytoplasmic RNA

miRNAs:

MicroRNAs

NEAT2:

Nuclear-enriched abundant transcript 2

NSCLC:

Non-small cell lung cancer

OMA:

Ovarian endometrioma

PCDH10:

Protocadherin 10

PRC2:

Polycomb repressive complex 2

p-JNK:

C-Jun N-terminal protein kinase

SR:

Serine- and arginine-rich

3‐MA:

3‐Methyladenine

CREB1:

Cyclic AMP response element-(CRE-) binding protein 1

CYP1B1:

Cytochrome P450 1B1

CYP19A1:

Cytochrome P450

E2:

Estradiol

GCs:

Granulosa cells

LIF:

Leukemia inhibitory factor

LncRNA:

Long non-coding RNAs

LOD:

Laparoscopic ovarian drilling

MALAT1:

Metastasis‐associated lung adenocarcinoma transcript‐1

mascRNA:

MALAT1-associated small cytoplasmic RNA

miRNAs:

MicroRNAs

NEAT2:

Nuclear-enriched abundant transcript 2

NSCLC:

Non-small cell lung cancer

PRC:

Polycomb repressive complex

P4:

Progesterone

TGFBR1:

Transforming growth factor beta receptor 1

References

  1. Malla RR, Patnala K, Kumar DKG, Marni R. Drug resistance in gynecologic cancers: emphasis on noncoding RNAs and drug efflux mechanisms. In: Riyaz B, Safraz A, editors. Overcoming drug resistance in gynecologic cancers. Amsterdam: Elsevier; 2021.

    Google Scholar 

  2. Maheshwari A, Kumar N, Mahanshetty U. Gynecological cancers: a summary of published Indian data. South Asian J Cancer. 2016;5:112–20.

    Article  Google Scholar 

  3. Saha P, Kumar A, Bhanja J, Shaik R, Kawale AL, Kumar R: A Review of Immune Blockade Safety and Antitumor Activity of Dostarlimab Therapy in Endometrial Cancer. International Journal for Research in Applied Sciences and Biotechnology 2022, 9:201-209.

  4. Lin K-T, Sun S-P, Wu J-I, Wang L. Low-dose glucocorticoids suppresses ovarian tumor growth and metastasis in an immunocompetent syngeneic mouse model. PLoS ONE. 2017;12:e0178937.

    Article  Google Scholar 

  5. Almadrones-Cassidy LA. Gynecologic cancers. Pittsburgh: Oncology Nursing Society; 2010.

    Google Scholar 

  6. Gilchrist RB, Ritter LJ, Myllymaa S, Kaivo-Oja N, Dragovic RA, Hickey TE, Ritvos O, Mottershead DG. Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation. J Cell Sci. 2006;119:3811–21.

    Article  CAS  Google Scholar 

  7. Di Fiore R, Suleiman S, Ellul B, O’toole SA, Savona-Ventura C, Felix A, Napolioni V, Conlon NT, Erson-Bensan AE, Kahramanoglu IJC. Gynocare update: modern strategies to improve diagnosis and treatment of rare gynecologic tumors—current challenges and future directions. Cancers. 2021;13:493.

    Article  Google Scholar 

  8. Tu J, Chen Y, Li Z, Yang H, Chen H, Yu Z. Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res. 2020;13:1–12.

    Article  Google Scholar 

  9. Ji Z, Song R, Regev A, Struhl K. Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins. Elife. 2015;4:e08890.

    Article  Google Scholar 

  10. Chew G-L, Pauli A, Rinn JL, Regev A, Schier AF, Valen EJD. Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development. 2013;140:2828–34.

    Article  CAS  Google Scholar 

  11. Anbiyaiee A, Ramazii M, Bajestani SS, Meybodi SM, Keivan M, Khoshnam SE, Farzaneh M. The function of LncRNA-ATB in cancer. Clin Transl Oncol. 2022. https://doi.org/10.1007/s12094-022-02848-1.

    Article  Google Scholar 

  12. Xu W-W, Jin J, Wu X-Y, Ren Q-L, Farzaneh M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int. 2022;22:1–9.

    Article  CAS  Google Scholar 

  13. Zhang X, Hamblin MH, Yin K-J. The long noncoding RNA Malat 1: Its physiological and pathophysiological functions. RNA Biol. 2017;14:1705–14.

    Article  Google Scholar 

  14. Farzaneh M, Najafi S, Anbiyaee O, Azizidoost S, Khoshnam SE. LncRNA MALAT1-related signaling pathways in osteosarcoma. Clin Transl Oncol. 2022. https://doi.org/10.1007/s12094-022-02876-x.

    Article  Google Scholar 

  15. Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, Tassone P. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11:1–19.

    Article  Google Scholar 

  16. Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, Tassone P. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11:63–63.

    Article  Google Scholar 

  17. Zhang X-Z, Liu H, Chen S-R. Mechanisms of long non-coding RNAs in cancers and their dynamic regulations. Cancers. 2020;12:1245.

    Article  CAS  Google Scholar 

  18. Zhao K, Jin S, Wei B, Cao S, Xiong Z. Association study of genetic variation of lncRNA MALAT1 with carcinogenesis of colorectal cancer. Cancer Manag Res. 2018;10:6257–61.

    Article  CAS  Google Scholar 

  19. Yan W, Hu H, Tang B. Progress in understanding the relationship between long noncoding RNA and endometriosis. Eur J Obstet Gynecol Reprod Biol X. 2020;5: 100067.

    Article  CAS  Google Scholar 

  20. Liang Z, Chen Y, Zhao Y, Xu C, Zhang A, Zhang Q, Wang D, He J, Hua W, Duan P. miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res Ther. 2017;8:1–11.

    Article  Google Scholar 

  21. Du Y, Zhang Z, Xiong W, Li N, Liu H, He H, Li Q, Liu Y, Zhang L. Estradiol promotes EMT in endometriosis via MALAT1/miR200s sponge function. Reproduction. 2019;157:179–88.

    Article  CAS  Google Scholar 

  22. Li Y, Liu Y-d, Chen S-l, Chen X, Ye D-s, Zhou X-y, Zhe J, Zhang J. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. MHR Basic Sci Reprod Med. 2019;25:17–29.

    Article  Google Scholar 

  23. Zhu M, Chen L, Hu M, Shi Z, Liu Y. Effects of lncRNA BANCR on endometriosis through ERK/MAPK pathway. Eur Rev Med Pharmacol Sci. 2019;23:6806–12.

    Google Scholar 

  24. Chen G, Zhang M, Liang Z, Chen S, Chen F, Zhu J, Zhao M, He J, Hua W, Duan P. Association of polymorphisms in MALAT1 with the risk of endometrial cancer in Southern Chinese women. J Clin Lab Anal. 2020;34: e23146.

    CAS  Google Scholar 

  25. Jao T-M, Fang W-H, Ciou S-C, Yu S-L, Hung Y-L, Weng W-T, Lin T-Y, Tsai M-H, Yang Y-C. PCDH10 exerts tumor-suppressor functions through modulation of EGFR/AKT axis in colorectal cancer. Cancer Lett. 2021;499:290–300.

    Article  CAS  Google Scholar 

  26. Zhao Y, Yang Y, Trovik J, Sun K, Zhou L, Jiang P, Lau T-S, Hoivik EA, Salvesen HB, Sun H. A novel wnt regulatory axis in endometrioid endometrial cancer. Can Res. 2014;74:5103–17.

    Article  CAS  Google Scholar 

  27. Amenyogbe E, Chen G, Wang Z, Lu X, Lin M, Lin AY. A Review on sex steroid hormone estrogen receptors in mammals and fish. Int J Endocrinol. 2020;2020:5386193–5386193.

    Article  Google Scholar 

  28. Li Q, Zhang C, Chen R, Xiong H, Qiu F, Liu S, Zhang M, Wang F, Wang Y, Zhou X, et al. Disrupting MALAT1/miR-200c sponge decreases invasion and migration in endometrioid endometrial carcinoma. Cancer Lett. 2016;383:28–40.

    Article  CAS  Google Scholar 

  29. Wang Y-W, Chen X, Gao J-W, Zhang H, Ma R-R, Gao Z-H, Gao P. High expression of cAMP-responsive element-binding protein 1 (CREB1) is associated with metastasis, tumor stage and poor outcome in gastric cancer. Oncotarget. 2015;6:10646–57.

    Article  Google Scholar 

  30. Allavena G, Carrarelli P, Del Bello B, Luisi S, Petraglia F, Maellaro E. Autophagy is upregulated in ovarian endometriosis: a possible interplay with p53 and heme oxygenase-1. Fertil Steril. 2015;103:1244-1251.e1241.

    Article  CAS  Google Scholar 

  31. Liu H, Zhang Z, Xiong W, Zhang L, Xiong Y, Li N, He H, Du Y, Liu Y. Hypoxia-inducible factor-1α promotes endometrial stromal cells migration and invasion by upregulating autophagy in endometriosis. Reproduction. 2017;153:809–20.

    Article  CAS  Google Scholar 

  32. Liu H, Zhang Z, Xiong W, Zhang L, Du Y, Liu Y, Xiong X. Long non-coding RNA MALAT 1 mediates hypoxia-induced pro-survival autophagy of endometrial stromal cells in endometriosis. J Cell Mol Med. 2019;23:439–52.

    Article  CAS  Google Scholar 

  33. Feng Y, Tan B-Z. LncRNA MALAT1 inhibits apoptosis of endometrial stromal cells through miR-126-5p-CREB1 axis by activating PI3K-AKT pathway. Mol Cell Biochem. 2020;475:185–94.

    Article  CAS  Google Scholar 

  34. Sun L, Zhang P, Lu W. lncRNA MALAT1 regulates mouse granulosa cell apoptosis and 17β-estradiol synthesis via regulating miR-205/CREB1 axis. Biomed Res Int. 2021;2021:667.

    Google Scholar 

  35. Liu X, Zhang P, Li Y, Zhao N, Han H. The AMPK-mTOR axis requires increased MALAT1 expression for promoting granulosa cell proliferation in endometriosis. Exp Ther Med. 2021;21:1–1.

    Article  CAS  Google Scholar 

  36. Venkatesh J, Wasson M-CD, Brown JM, Fernando W, Marcato P. LncRNA-miRNA axes in breast cancer: novel points of interaction for strategic attack. Cancer Lett. 2021;509:81–8.

    Article  CAS  Google Scholar 

  37. Shih C-H, Chuang L-L, Tsai M-H, Chen L-H, Chuang EY, Lu T-P, Lai L-C. Hypoxia-induced MALAT1 promotes the proliferation and migration of breast cancer cells by sponging MiR-3064-5p. Front Oncol. 2021;11:658151–658151.

    Article  Google Scholar 

  38. Wang N, Cao S, Wang X, Zhang L, Yuan H, Ma X. lncRNA MALAT1/miR-26a/26b/ST8SIA4 axis mediates cell invasion and migration in breast cancer cell lines. Oncol Rep. 2021;46:181.

    Article  CAS  Google Scholar 

  39. Zhao C, Ling X, Xia Y, Yan B, Guan Q. The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 2021;21:441.

    Article  CAS  Google Scholar 

  40. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020;13:117.

    Article  Google Scholar 

  41. Shao J, Zhang Q, Wang P, Wang Z. LncRNA MALAT1 promotes breast cancer progression by sponging miR101-3p to mediate mTOR/PKM2 signal transmission. Am J Transl Res. 2021;13:10262–75.

    CAS  Google Scholar 

  42. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, Jing Y, Yang H, Chen R, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA. 2011;108:4129–34.

    Article  CAS  Google Scholar 

  43. Zheng L, Zhang Y, Fu Y, Gong H, Guo J, Wu K, Jia Q, Ding X. Long non-coding RNA MALAT1 regulates BLCAP mRNA expression through binding to miR-339-5p and promotes poor prognosis in breast cancer. Biosci Rep. 2019;39:BSR20181284.

    Article  CAS  Google Scholar 

  44. Zhao M, Zhang L, Qiu X, Zeng F, Chen W, An Y, Hu B, Wu X, Wu X. BLCAP arrests G1/S checkpoint and induces apoptosis through downregulation of pRb1 in HeLa cells. Oncol Rep. 2016;35:3050–8.

    Article  CAS  Google Scholar 

  45. Chou J, Wang B, Zheng T, Li X, Zheng L, Hu J, Zhang Y, Xing Y, Xi T. MALAT1 induced migration and invasion of human breast cancer cells by competitively binding miR-1 with cdc42. Biochem Biophys Res Commun. 2016;472:262–9.

    Article  CAS  Google Scholar 

  46. Zuo Y, Li Y, Zhou Z, Ma M, Fu K. Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed Pharmacother. 2017;95:922–8.

    Article  CAS  Google Scholar 

  47. Jin C, Yan B, Lu Q, Lin Y, Ma L. Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumor Biol. 2016;37:7383–94.

    Article  CAS  Google Scholar 

  48. Li Y, Wu Y, Abbatiello TC, Wu WL, Kim JR, Sarkissyan M, Sarkissyan S, Chung SS, Elshimali Y, Vadgama JV. Slug contributes to cancer progression by direct regulation of ERα signaling pathway. Int J Oncol. 2015;46:1461–72.

    Article  CAS  Google Scholar 

  49. Barsoum FS, Awad AS, Hussein NH, Eissa RA, El Tayebi HM. MALAT-1: LncRNA ruling miR-182/PIG-C/mesothelin triad in triple negative breast cancer. Pathol Res Pract. 2020;216: 153274.

    Article  CAS  Google Scholar 

  50. Wang Y, Wang L, Li D, Wang HB, Chen QF. Mesothelin promotes invasion and metastasis in breast cancer cells. J Int Med Res. 2012;40:2109–16.

    Article  CAS  Google Scholar 

  51. Nakakido M, Tamura K, Chung S, Ueda K, Fujii R, Kiyotani K, Nakamura Y. Phosphatidylinositol glycan anchor biosynthesis, class X containing complex promotes cancer cell proliferation through suppression of EHD2 and ZIC1, putative tumor suppressors. Int J Oncol. 2016;49:868–76.

    Article  CAS  Google Scholar 

  52. Feng T, Shao F, Wu Q, Zhang X, Xu D, Qian K, Xie Y, Wang S, Xu N, Wang Y, Qi C. miR-124 downregulation leads to breast cancer progression via LncRNA-MALAT1 regulation and CDK4/E2F1 signal activation. Oncotarget. 2016;7:16205–16.

    Article  Google Scholar 

  53. Wang Y, Zhou Y, Yang Z, Chen B, Huang W, Liu Y, Zhang Y. MiR-204/ZEB2 axis functions as key mediator for MALAT1-induced epithelial–mesenchymal transition in breast cancer. Tumor Biol. 2017;39:1010428317690998.

    Article  Google Scholar 

  54. Guo C, Wang X, Chen L, Li M, Li M, Hu Y, Ding W, Wang X. Long non-coding RNA MALAT1 regulates ovarian cancer cell proliferation, migration and apoptosis through Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22:3703–12.

    CAS  Google Scholar 

  55. Wang Z, Li B, Zhou L, Yu S, Su Z, Song J, Sun Q, Sha O, Wang X, Jiang W. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci. 2016;113:13150–5.

    Article  CAS  Google Scholar 

  56. Pei C, Gong X, Zhang Y. LncRNA MALAT-1 promotes growth and metastasis of epithelial ovarian cancer via sponging microrna-22. Am J Transl Res. 2020;12:6977.

    CAS  Google Scholar 

  57. Paliwal N, Vashist M, Chauhan M. Evaluation of miR-22 and miR-21 as diagnostic biomarkers in patients with epithelial ovarian cancer. 3 Biotech. 2020;10:1–6.

    Article  Google Scholar 

  58. Xiong J, Du Q, Liang Z. Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene. 2010;29:4980–8.

    Article  CAS  Google Scholar 

  59. Zhang K, Li X, Wang Z, Han Z, Zhao Y. MiR-22 inhibits lung cancer cell EMT and invasion through targeting Snail. Eur Rev Med Pharmacol Sci. 2017;21:3598–604.

    CAS  Google Scholar 

  60. Wang Y, Wang X, Han L, Hu D. LncRNA MALAT1 regulates the progression and cisplatin resistance of ovarian cancer cells via modulating miR-1271-5p/E2F5 axis. Cancer Manag Res. 2020;12:9999.

    Article  CAS  Google Scholar 

  61. Li Q, Shi J, Xu X. MicroRNA-1271–5p inhibits the tumorigenesis of ovarian cancer through targeting E2F5 and negatively regulates the mTOR signaling pathway. Panminerva Med. 2020;63:336.

    Google Scholar 

  62. Hu J, Meng Y, Yu T, Hu L, Mao M. Ubiquitin E3 ligase MARCH7 promotes ovarian tumor growth. Oncotarget. 2015;6:12174.

    Article  Google Scholar 

  63. Hu J, Zhang L, Mei Z, Jiang Y, Yi Y, Liu L, Meng Y, Zhou L, Zeng J, Wu H. Interaction of E3 ubiquitin ligase MARCH7 with long noncoding RNA MALAT1 and autophagy-related protein ATG7 promotes autophagy and invasion in ovarian cancer. Cell Physiol Biochem. 2018;47:654–66.

    Article  CAS  Google Scholar 

  64. Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy. 2014;10:192–200.

    Article  CAS  Google Scholar 

  65. Zhang S-F, Wang X-Y, Fu Z-Q, Peng Q-H, Zhang J-Y, Ye F, Fu Y-F, Zhou C-Y, Lu W-G, Cheng X-D. TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy. 2015;11:225–38.

    Article  Google Scholar 

  66. Zhang X, Wang L-L, Wang B, Liu H-L, Zhang J, Li Y-H, Wang L-H. Effect of siRNA-induced Atg7 gene silencing on the sensitivity of ovarian cancer SKOV3 cells to cisplatin. Am J Transl Res. 2020;12:2052.

    CAS  Google Scholar 

  67. Gajewska M, Gajkowska B, Motyl T. Apoptosis and autophagy induced by TGF-B1 in bovine mammary epithelial BME-UV1 cells. J Physiol Pharmacol Official J Polish Physiol Soc. 2005;56:143–57.

    Google Scholar 

  68. Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR, Sugimoto K, Miyazono K. Autophagy is activated by TGF-β and potentiates TGF-β–mediated growth inhibition in human hepatocellular carcinoma cells. Can Res. 2009;69:8844–52.

    Article  CAS  Google Scholar 

  69. Zhou Y, Xu X, Lv H, Wen Q, Li J, Tan L, Li J, Sheng X. The long noncoding RNA MALAT-1 is highly expressed in ovarian cancer and induces cell growth and migration. PLoS ONE. 2016;11: e0155250.

    Article  Google Scholar 

  70. Wu L, Wang X, Guo Y. Long non-coding RNA MALAT1 is upregulated and involved in cell proliferation, migration and apoptosis in ovarian cancer. Exp Ther Med. 2017;13:3055–60.

    Article  CAS  Google Scholar 

  71. Mao T-L, Fan M-H, Dlamini N, Liu C-L. LncRNA MALAT1 facilitates ovarian cancer progression through promoting chemoresistance and invasiveness in the tumor microenvironment. Int J Mol Sci. 2021;22:10201.

    Article  CAS  Google Scholar 

  72. Liu S, Jiang X, Li W, Cao D, Shen K, Yang J. Inhibition of the long non-coding RNA MALAT1 suppresses tumorigenicity and induces apoptosis in the human ovarian cancer SKOV3 cell line. Oncol Lett. 2016;11:3686–92.

    Article  CAS  Google Scholar 

  73. Chen Q, Su Y, He X, Zhao W, Wu C, Zhang W, Si X, Dong B, Zhao L, Gao Y. Plasma long non-coding RNA MALAT1 is associated with distant metastasis in patients with epithelial ovarian cancer. Oncol Lett. 2016;12:1361–6.

    Article  CAS  Google Scholar 

  74. Qiu J-J, Lin X-J, Tang X-Y, Zheng T-T, Lin Y-Y, Hua K-Q. Exosomal metastasis-associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci. 1960;2018:14.

    Google Scholar 

  75. Lei R, Xue M, Zhang L, Lin Z. Long noncoding RNA MALAT1-regulated microRNA 506 modulates ovarian cancer growth by targeting iASPP. Onco Targets Ther. 2017;10:35.

    Article  CAS  Google Scholar 

  76. Zheng Y, Yin L, Chen H, Yang S, Pan C, Lu S, Miao M, Jiao B. miR-376a suppresses proliferation and induces apoptosis in hepatocellular carcinoma. FEBS Lett. 2012;586:2396–403.

    Article  CAS  Google Scholar 

  77. Fellenberg J, Sähr H, Kunz P, Zhao Z, Liu L, Tichy D, Herr I. Restoration of miR-127-3p and miR-376a-3p counteracts the neoplastic phenotype of giant cell tumor of bone derived stromal cells by targeting COA1, GLE1 and PDIA6. Cancer Lett. 2016;371:134–41.

    Article  CAS  Google Scholar 

  78. Li Y, Ahmad A, Sarkar F. ASPP and iASPP: implication in cancer development and progression. Cell Mol Biol (Noisy-le-grand). 2015;61:2–8.

    CAS  Google Scholar 

  79. Jiang L, Siu MK, Wong OG, Tam K-F, Lu X, Lam EW, Ngan HY, Le X-F, Wong ES, Monteiro LJ. iASPP and chemoresistance in ovarian cancers: effects on paclitaxel-mediated mitotic catastrophe. Clin Cancer Res. 2011;17:6924–33.

    Article  CAS  Google Scholar 

  80. Mak CS, Yung MM, Hui L, Leung LL, Liang R, Chen K, Liu SS, Qin Y, Leung TH, Lee K-F. MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Mol Cancer. 2017;16:1–17.

    Article  Google Scholar 

  81. Lin Q, Guan W, Ren W, Zhang L, Zhang J, Xu G. MALAT1 affects ovarian cancer cell behavior and patient survival. Oncol Rep. 2018;39:2644–52.

    CAS  Google Scholar 

  82. Gordon MA, Babbs B, Cochrane DR, Bitler BG, Richer JK. The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol Carcinog. 2019;58:196–205.

    Article  CAS  Google Scholar 

  83. Venables JP, Brosseau J-P, Gadea G, Klinck R, Prinos P, Beaulieu J-F, Lapointe E, Durand M, Thibault P, Tremblay K. RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol Cell Biol. 2013;33:396–405.

    Article  CAS  Google Scholar 

  84. Bai L, Wang A, Zhang Y, Xu X, Zhang X. Knockdown of MALAT1 enhances chemosensitivity of ovarian cancer cells to cisplatin through inhibiting the Notch1 signaling pathway. Exp Cell Res. 2018;366:161–71.

    Article  CAS  Google Scholar 

  85. Ma S-l, Hu Y-P, Wang F, Huang Z-C, Chen Y-F, Wang X-K, Fu L-W. Lapatinib antagonizes multidrug resistance-associated protein 1-mediated multidrug resistance by inhibiting its transport function. Mol Med. 2014;20:390–9.

    Article  Google Scholar 

  86. Li X, Wang H, Wang J, Chen Y, Yin X, Shi G, Li H, Hu Z, Liang X. Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation. BMC Cancer. 2016;16:1–10.

    Article  Google Scholar 

  87. Jin Y, Feng S, Qiu S, Shao N, Zheng J. LncRNA MALAT1 promotes proliferation and metastasis in epithelial ovarian cancer via the PI3K-AKT pathway. Eur Rev Med Pharmacol Sci. 2017;21:3176–84.

    CAS  Google Scholar 

  88. Xu W, Yang Z, Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015;9:317–24.

    Article  CAS  Google Scholar 

  89. Sun Q, Li Q, Xie F. LncRNA-MALAT1 regulates proliferation and apoptosis of ovarian cancer cells by targeting miR-503-5p. Onco Targets Ther. 2019;12:6297.

    Article  CAS  Google Scholar 

  90. Ruiz‐Manriquez LM, Estrada‐Meza C, Benavides‐Aguilar JA, Ledesma‐Pacheco SJ, Torres‐Copado A, Serrano‐Cano FI, Bandyopadhyay A, Pathak S, Chakraborty S, Srivastava A: Phytochemicals mediated modulation of microRNAs and long non coding RNAs in cancer prevention and therapy. Phytotherapy Research 2022, 36:705-729.

  91. Abubaker K, Luwor RB, Zhu H, McNally O, Quinn MA, Burns CJ, Thompson EW, Findlay JK, Ahmed N. Inhibition of the JAK2/STAT3 pathway in ovarian cancer results in the loss of cancer stem cell-like characteristics and a reduced tumor burden. BMC Cancer. 2014;14:1–22.

    Article  Google Scholar 

  92. Rosen DG, Mercado-Uribe I, Yang G, Bast RC Jr, Amin HM, Lai R, Liu J. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer Interdiscip Int J Am Cancer Soc. 2006;107:2730–40.

    CAS  Google Scholar 

  93. Kim H-C, Kim E, Bae JI, Lee KH, Jeon Y-T, Hwang J-W, Lim Y-J, Min S-W, Park H-P. Sevoflurane postconditioning reduces apoptosis by activating the JAK-STAT pathway after transient global cerebral ischemia in rats. J Neurosurg Anesthesiol. 2017;29:37–45.

    Article  Google Scholar 

  94. Bayoumi AS, Sayed A, Broskova Z, Teoh J-P, Wilson J, Su H, Tang Y-L, Kim I-M. Crosstalk between long noncoding RNAs and microRNAs in health and disease. Int J Mol Sci. 2016;17:356.

    Article  Google Scholar 

  95. Pa M, Naizaer G, Seyiti A, Kuerbang G. Long noncoding RNA MALAT1 functions as a sponge of MiR-200c in ovarian cancer. Oncol Res Featur Preclin Clin Cancer Ther. 2021;28:7–8.

    Google Scholar 

  96. Lee JE, Park HS, Lee D, Yoo G, Kim T, Jeon H, Yeo M-K, Lee C-S, Moon JY, Jung SS. Hippo pathway effector YAP inhibition restores the sensitivity of EGFR-TKI in lung adenocarcinoma having primary or acquired EGFR-TKI resistance. Biochem Biophys Res Commun. 2016;474:154–60.

    Article  CAS  Google Scholar 

  97. Yao Q, Yang J, Liu T, Zhang J, Zheng Y. Long noncoding RNA MALAT1 promotes the stemness of esophageal squamous cell carcinoma by enhancing YAP transcriptional activity. FEBS Open Bio. 2019;9:1392–402.

    Article  CAS  Google Scholar 

  98. Wu X, Wang Y, Zhong W, Cheng H, Tian Z. The long non-coding RNA MALAT1 enhances ovarian cancer cell stemness by inhibiting YAP translocation from nucleus to cytoplasm. Med Sci Monitor Int Med J Exp Clin Res. 2020;26:e922012–e922011.

    CAS  Google Scholar 

  99. Li Z-X, Zhu Q-N, Zhang H-B, Hu Y, Wang G, Zhu Y-S. MALAT1: a potential biomarker in cancer. Cancer Manag Res. 2018;10:6757.

    Article  CAS  Google Scholar 

  100. Yang L, Bai H, Deng Y, Fan L. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. Eur Rev Med Pharmacol Sci. 2015;19:3187–93.

    CAS  Google Scholar 

  101. Pontillo A, Bricher P, Leal V, Lima S, Souza P, Crovella S. Role of inflammasome genetics in susceptibility to HPV infection and cervical cancer development. J Med Virol. 2016;88:1646–51.

    Article  CAS  Google Scholar 

  102. Wang T, Zhang W, Huang W, Hua Z, Li S. LncRNA MALAT1 was regulated by HPV16 E7 independently of pRB in cervical cancer cells. J Cancer. 2021;12:6344.

    Article  CAS  Google Scholar 

  103. Hao Y, Yan Z, Zhang A, Hu S, Wang N, Luo X-G, Ma W, Zhang T-C, He H. IL-6/STAT3 mediates the HPV18 E6/E7 stimulated upregulation of MALAT1 gene in cervical cancer HeLa cells. Virus Res. 2020;281: 197907.

    Article  CAS  Google Scholar 

  104. Jiang Y, Li Y, Fang S, Jiang B, Qin C, Xie P, Zhou G, Li G. The role of MALAT1 correlates with HPV in cervical cancer. Oncol Lett. 2014;7:2135–41.

    Article  CAS  Google Scholar 

  105. Wang N, Hou M, Zhan Y, Shen X, Xue H. MALAT1 promotes cisplatin resistance in cervical cancer by activating the PI3K/AKT pathway. Eur Rev Med Pharmacol Sci. 2018;22:7653–9.

    CAS  Google Scholar 

  106. Lu H, He Y, Lin L, Qi Z, Ma L, Li L, Su Y. Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145. Tumor Biol. 2016;37:1683–91.

    Article  CAS  Google Scholar 

  107. Guo C, Zhao D, Zhang Q, Liu S, Sun M-Z. miR-429 suppresses tumor migration and invasion by targeting CRKL in hepatocellular carcinoma via inhibiting Raf/MEK/ERK pathway and epithelial-mesenchymal transition. Sci Rep. 2018;8:1–18.

    Google Scholar 

  108. Shen F, Zheng H, Zhou L, Li W, Xu X. Overexpression of MALAT1 contributes to cervical cancer progression by acting as a sponge of miR-429. J Cell Physiol. 2019;234:11219–26.

    Article  CAS  Google Scholar 

  109. Tie W, Ge F. MALAT1 inhibits proliferation of HPV16-positive cervical cancer by sponging miR-485-5p to promote expression of MAT2A. DNA Cell Biol. 2021;40:1407–17.

    Article  CAS  Google Scholar 

  110. Xu Y, Zhang Q, Lin F, Zhu L, Huang F, Zhao L, Ou R. Casiopeina II-gly acts on lncRNA MALAT1 by miR-17-5p to inhibit FZD2 expression via the Wnt signaling pathway during the treatment of cervical carcinoma. Oncol Rep. 2019;42:1365–79.

    CAS  Google Scholar 

  111. Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, MacBeath G. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell. 2014;159:844–56.

    Article  CAS  Google Scholar 

  112. Fu Y, Zheng Q, Mao Y, Jiang X, Chen X, Liu P, Lv B, Huang T, Yang J, Cheng Y. WNT2-mediated FZD2 stabilization regulates esophageal cancer metastasis via STAT3 signaling. Front oncol. 2020;10:1168.

    Article  Google Scholar 

  113. Han X, Wang Q, Wang Y, Hu B, Dong X, Zhang H, Wang W. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1/microRNA-202-3p/periostin axis modulates invasion and epithelial–mesenchymal transition in human cervical cancer. J Cell Physiol. 2019;234:14170–80.

    Article  CAS  Google Scholar 

  114. Liang T, Wang Y, Jiao Y, Cong S, Jiang X, Dong L, Zhang G, Xiao D. LncRNA MALAT1 accelerates cervical carcinoma proliferation by suppressing miR-124 expression in cervical tumor cells. J Oncol. 2021;2021:8836078.

    Article  Google Scholar 

  115. Guo F, Li Y, Liu Y, Wang J, Li Y, Li G. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin. 2010;42:224–9.

    Article  CAS  Google Scholar 

  116. Liu S, Song L, Zeng S, Zhang L. MALAT1-miR-124-RBG2 axis is involved in growth and invasion of HR-HPV-positive cervical cancer cells. Tumor Biol. 2016;37:633–40.

    Article  Google Scholar 

  117. Giubellino A, Burke TR, Bottaro DP. Grb2 signaling in cell motility and cancer. Expert Opin Ther Targets. 2008;12:1021–33.

    Article  CAS  Google Scholar 

  118. Sun R, Qin C, Jiang B, Fang S, Pan X, Peng L, Liu Z, Li W, Li Y, Li G. Down-regulation of MALAT1 inhibits cervical cancer cell invasion and metastasis by inhibition of epithelial–mesenchymal transition. Mol BioSyst. 2016;12:952–62.

    Article  CAS  Google Scholar 

  119. Zhang J, Liu SC, Luo XH, Tao GX, Guan M, Yuan H, Hu DK. Exosomal Long noncoding RNA s are differentially expressed in the Cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal. 2016;30:1116–21.

    Article  CAS  Google Scholar 

  120. Xia C, Liang S, He Z, Zhu X, Chen R, Chen J. Metformin, a first-line drug for type 2 diabetes mellitus, disrupts the MALAT1/miR-142-3p sponge to decrease invasion and migration in cervical cancer cells. Eur J Pharmacol. 2018;830:59–67.

    Article  CAS  Google Scholar 

  121. Qiao F-H, Tu M, Liu H-Y. Role of MALAT1 in gynecological cancers: pathologic and therapeutic aspects. Oncol Lett. 2021;21:1–8.

    Article  Google Scholar 

  122. Liao H, Chen Q, Xiao J. Reflections on the role of Malat1 in gynecological cancer. Cancer Manag Res. 2020;12:13489.

    Article  CAS  Google Scholar 

  123. Liu R, Li J, Lai Y, Liao Y, Liu R, Qiu W. Hsa-miR-1 suppresses breast cancer development by down-regulating K-ras and long non-coding RNA MALAT1. Int J Biol Macromol. 2015;81:491–7.

    Article  CAS  Google Scholar 

  124. Zhu P, Wang F, Li Q. Correlation study between long non-coding RNA MALAT1 and radiotherapy efficiency on cervical carcinoma and generation of radiotherapy resistant model of cancer. Eur Rev Med Pharmacol Sci. 2020;24:7564–7564.

    CAS  Google Scholar 

  125. Li Z, Xu L, Liu Y, Fu S, Tu J, Hu Y, Xiong Q. LncRNA MALAT1 promotes relapse of breast cancer patients with postoperative fever. Am J Transl Res. 2018;10:3186.

    CAS  Google Scholar 

  126. Huang XJ, Xia Y, He GF, Zheng LL, Cai YP, Yin Y, Wu Q. MALAT1 promotes angiogenesis of breast cancer. Oncol Rep. 2018;40:2683–9.

    CAS  Google Scholar 

  127. Arun G, Diermeier S, Akerman M, Chang K-C, Wilkinson JE, Hearn S, Kim Y, MacLeod AR, Krainer AR, Norton L. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 2016;30:34–51.

    Article  CAS  Google Scholar 

  128. Li J, Liu X, Zang S, Zhou J, Zhang F, Sun B, Qi D, Li X, Kong J, Jin D. Small extracellular vesicle-bound vascular endothelial growth factor secreted by carcinoma-associated fibroblasts promotes angiogenesis in a bevacizumab-resistant manner. Cancer Lett. 2020;492:71–83.

    Article  CAS  Google Scholar 

  129. Zhang Y, Hu M, Liu L, Cheng X-L, Cai J, Zhou J, Wang T. Anticancer effects of Rosmarinic acid in OVCAR-3 ovarian cancer cells are mediated via induction of apoptosis, suppression of cell migration and modulation of lncRNA MALAT-1 expression. J BUON. 2018;23:763–8.

    Google Scholar 

  130. Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta BBA Rev Cancer. 2021;1875:188502.

    Article  CAS  Google Scholar 

  131. Zhou L-J, Yang D-W, Ou L-N, Guo X-R, Wu B-L. Circulating expression level of lncrna malat1 in diabetic kidney disease patients and its clinical significance. J Diabetes Res. 2020;2020:4729019.

    Article  Google Scholar 

  132. Gong X, Zhu Y, Chang H, Li Y, Ma F. Long noncoding RNA MALAT1 promotes cardiomyocyte apoptosis after myocardial infarction via targeting miR-144-3p. Biosci Rep. 2019;39:BSR20191103.

    Article  CAS  Google Scholar 

  133. Guo D, Ma J, Yan L, Li T, Li Z, Han X, Shui S. Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem. 2017;43:182–94.

    Article  CAS  Google Scholar 

  134. Yu J, Chen L, Zhang B, Zheng Q. The modulation of endometriosis by lncRNA MALAT1 via NF-kappaB/iNOS. Eur Rev Med Pharmacol Sci. 2019;23:4073–80.

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (Ethical No. IR.AJUMS.REC.1401.124).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MF, SN, MA, and DD have been involved in drafting the manuscript. MCH, MSHS, and SHA have made substantial contributions to the revising of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shirin Azizidoost.

Ethics declarations

Conflict of interests

The authors declare that there is no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, M., Najafi, S., Dari, M.A.G. et al. Functional roles of long noncoding RNA MALAT1 in gynecologic cancers. Clin Transl Oncol 25, 48–65 (2023). https://doi.org/10.1007/s12094-022-02914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02914-8

Keywords

Navigation