Skip to main content

Advertisement

Log in

LncRNA MALAT1-related signaling pathways in osteosarcoma

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Osteosarcoma (OS) is a common and malignant form of bone cancer, which affects children and young adults. OS is identified by osteogenic differentiation and metastasis. However, the exact molecular mechanism of OS development and progression is still unclear. Recently, long non-coding RNAs (lncRNA) have been proven to regulate OS proliferation and drug resistance. LncRNAs are longer than 200 nucleotides that represent the extensive applications in the processing of pre-mRNA and the pathogenesis of human diseases. Metastasis‐associated lung adenocarcinoma transcript‐1 (MALAT1) is a well-known lncRNA known as a transcriptional and translational regulator. The aberrant expression of MALAT1 has been shown in several human cancers. The high level of MALAT1 is involved in OS cell growth and tumorigenicity by targeting several signaling pathways and miRNAs. Hence, MALAT1 might be a suitable approach for OS diagnosis and treatment. In this review, we will summarize the role of lncRNA MALAT1 in the pathophysiology of OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CeRNA:

Endogenous RNA

EMT:

Epithelial-to-mesenchymal transition

E2:

17β-Estradiol

HCN:

Hepcarcin

HDAC4:

Histone deacetylase 4

HMGB1:

High mobility group box 1

LncRNA:

Long non-coding RNAs

MALAT1:

Metastasis‐associated lung adenocarcinoma transcript‐1

mascRNA:

MALAT1-associated small cytoplasmic RNA

MSCs:

Mesenchymal stem cells

NEAT2:

Nuclear-enriched abundant transcript 2

OS:

Osteosarcoma

Pol II:

RNA polymerase II

Rac1:

Ras-related C3 botulinum toxin substrate 1

ROCK:

Rho-associated coiled-coil containing protein kinases

SphK1:

Sphingosine kinase type 1

References

  1. Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview. Rheumatol Ther. 2017;4:25–43.

    Article  Google Scholar 

  2. Le Nail L-R, Brennan M, Rosset P, Deschaseaux F, Piloquet P, Pichon O, Le Caignec C, Crenn V, Layrolle P, Hérault O, De Pinieux G, Trichet V. Comparison of tumor- and bone marrow-derived mesenchymal stromal/stem cells from patients with high-grade osteosarcoma. Int J Mol Sci. 2018;19:707.

    Article  Google Scholar 

  3. Soeharno H, Povegliano L, Choong PF. Multimodal treatment of bone metastasis-a surgical perspective. Front Endocrinol (Lausanne). 2018;9:518–518.

    Article  Google Scholar 

  4. Fernandes I, Melo-Alvim C, Lopes-Brás R, Esperança-Martins M, Costa L. Osteosarcoma pathogenesis leads the way to new target treatments. Int J Mol Sci. 2021;22:813.

    Article  CAS  Google Scholar 

  5. Ferrari S, Serra M. An update on chemotherapy for osteosarcoma. Expert Opin Pharmacother. 2015;16:2727–36.

    Article  CAS  Google Scholar 

  6. Eaton BR, Schwarz R, Vatner R, Yeh B, Claude L, Indelicato DJ, Laack N. Osteosarcoma. Pediatr Blood Cancer. 2020;68:e28352.

    Google Scholar 

  7. Meazza C, Bastoni S, Scanagatta P. What is the best clinical approach to recurrent/refractory osteosarcoma? Expert Rev Anticancer Ther. 2020;20:415–28.

    Article  CAS  Google Scholar 

  8. Ramezanpour S, Horvai A E, Piawah S, Link T M, Primary osteosarcoma of the parietal bone. Skeletal Radiology 2021: 1–5.

  9. Desai SA, Manjappa A, Khulbe P. Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview. J Egypt Natl Canc Inst. 2021;33:1–14.

    Article  Google Scholar 

  10. Tung F-I, Zheng L-J, Hou K-T, Chiang C-S, Chen M-H, Liu T-Y. One-stop radiotherapeutic targeting of primary and distant osteosarcoma to inhibit cancer progression and metastasis using 2DG-grafted graphene quantum dots. Nanoscale. 2020;12:8809–18.

    Article  CAS  Google Scholar 

  11. Iwata S. Osteosarcoma metastasis—prognostic factors and treatment strategies. In: Introduction to cancer metastasis. Netherlands: Elsevier; 2017. p. 223–32.

    Chapter  Google Scholar 

  12. Raimondi L, De Luca A, Costa V, Amodio N, Carina V, Bellavia D, Tassone P, Pagani S, Fini M, Alessandro R, Giavaresi G. Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment. Oncotarget. 2017;8:100831–51.

    Article  Google Scholar 

  13. Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett. 2022;27:14.

    Article  CAS  Google Scholar 

  14. Rothzerg E, Pfaff AL, Koks S. Innovative approaches for treatment of osteosarcoma. Exp Biol Med. 2022;247:310–16.

  15. Kong C, Hansen MF. Biomarkers in osteosarcoma. Expert Opin Med Diagn. 2009;3:13–23.

    Article  CAS  Google Scholar 

  16. Otoukesh B, Boddouhi B, Moghtadaei M, Kaghazian P, Kaghazian M. Novel molecular insights and new therapeutic strategies in osteosarcoma. Cancer Cell Int. 2018;18:158.

    Article  CAS  Google Scholar 

  17. Sayles LC, Breese MR, Koehne AL, Leung SG, Lee AG, Liu H-Y, Spillinger A, Shah AT, Tanasa B, Straessler K. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 2019;9:46–63.

    Article  CAS  Google Scholar 

  18. Landuzzi L, Manara MC, Lollini P-L, Scotlandi K. Patient derived xenografts for genome-driven therapy of osteosarcoma. Cells. 2021;10:416.

    Article  CAS  Google Scholar 

  19. Liu M, Yang P, Mao G, Deng J, Peng G, Ning X, Yang H, Sun H. Long non-coding RNA MALAT1 as a valuable biomarker for prognosis in osteosarcoma: a systematic review and meta-analysis. Int J Surg. 2019;72:206–13.

    Article  CAS  Google Scholar 

  20. Anbiyaiee A, Ramazii M, Bajestani SS, Meybodi SM, Keivan M, Khoshnam SE, Farzaneh M. The function of LncRNA-ATB in cancer. Clin Transl Oncol. 2022. https://doi.org/10.1007/s12094-022-02848-1.

    Article  Google Scholar 

  21. Xu W-W, Jin J, Wu X-y, Ren Q-L, Farzaneh M. MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int. 2022;22:1–9.

    Article  CAS  Google Scholar 

  22. Min L, Garbutt C, Tu C, Hornicek F, Duan Z. Potentials of long noncoding RNAs (lncRNAs) in sarcoma: from biomarkers to therapeutic targets. Int J Mol Sci. 2017;18:731.

    Article  Google Scholar 

  23. Yang Z, Li X, Yang Y, He Z, Qu X, Zhang Y. Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis. 2016;7:e2389–e2389.

    Article  CAS  Google Scholar 

  24. Alishahi M, Ghaedrahmati F, Kolagar TA, Winlow W, Nikkar N, Farzaneh M, Khoshnam SE. Long non-coding RNAs and cell death following ischemic stroke. Metab Brain Dis. 2019;34:1243–51.

    Article  CAS  Google Scholar 

  25. Smolle MA, Pichler M. The role of long non-coding RNAs in osteosarcoma. Noncoding RNA. 2018;4:7.

    Article  Google Scholar 

  26. Sun XH, Yang LB, Geng XL, Wang R, Zhang ZC. Increased expression of lncRNA HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma. Int J Clin Exp Pathol. 2015;8:2994–3000.

    Google Scholar 

  27. Najafi S, Ghafouri-Fard S, Hussen BM, Jamal HH, Taheri M, Hallajnejad M. Oncogenic roles of small nucleolar RNA host gene 7 (SNHG7) long noncoding RNA in human cancers and potentials. Front Cell Dev Biol. 2022;9:809345.

    Article  Google Scholar 

  28. Han Z, Shi L. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis. Biochem Biophys Res Commun. 2018;495:947–53.

    Article  CAS  Google Scholar 

  29. Ghafouri-Fard S, Najafi S, Hussen BM, Ganjo AR, Taheri M, Samadian M. DLX6-AS1: a long non-coding RNA with oncogenic features. Front Cell Dev Biol. 2022;10:746443.

    Article  Google Scholar 

  30. Chen F, Mo J, Zhang L. Long noncoding RNA BCAR4 promotes osteosarcoma progression through activating GLI2-dependent gene transcription. Tumour biol J Int Soc Oncodevelopmental Biol Med. 2016;37:13403–12.

    Article  CAS  Google Scholar 

  31. Liu M, Yang P, Mao G, Deng J, Peng G, Ning X, Yang H, Sun H. Long non-coding RNA MALAT1 as a valuable biomarker for prognosis in osteosarcoma: a systematic review and meta-analysis. Int J surg (London, England). 2019;72:206–13.

    Article  CAS  Google Scholar 

  32. Hanly DJ, Esteller M, Berdasco M. Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci. 2018;373:20170074.

    Article  Google Scholar 

  33. Qian Y, Shi L, Luo Z. Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy. Front Med (Lausanne). 2020;7:612393–612393.

    Article  Google Scholar 

  34. Sun Y, Ma L. New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers (Basel). 2019;11:216.

    Article  CAS  Google Scholar 

  35. Li Z, Dou P, Liu T, He S. Application of long noncoding RNAs in osteosarcoma: biomarkers and therapeutic targets. Cell Physiol Biochem. 2017;42:1407–19.

    Article  CAS  Google Scholar 

  36. Kim J, Piao H-L, Kim B-J, Yao F, Han Z, Wang Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 2018;50:1705–15.

    Article  CAS  Google Scholar 

  37. Zhao L, Lou G, Li A, Liu Y. lncRNA MALAT1 modulates cancer stem cell properties of liver cancer cells by regulating YAP1 expression via miR-375 sponging. Mol Med Rep. 2020;22:1449–57.

    Article  CAS  Google Scholar 

  38. Wang Y, Zhang Y, Yang T, Zhao W, Wang N, Li P, Zeng X, Zhang W. Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget. 2017;8:59417–34.

    Article  Google Scholar 

  39. Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, Tassone P. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11:63–63.

    Article  Google Scholar 

  40. Zhang Z-C, Tang C, Dong Y, Zhang J, Yuan T, Tao S-C, Li X-L. Targeting the long noncoding RNA MALAT1 blocks the pro-angiogenic effects of osteosarcoma and suppresses tumour growth. Int J Biol Sci. 2017;13:1398–408.

    Article  CAS  Google Scholar 

  41. Liu B, Zhan X, Liu C. Long noncoding RNA MALAT1 interacts with miR-124-3p to modulate osteosarcoma progression by targeting SphK1. J Oncol. 2021;2021:8390165.

    Google Scholar 

  42. Zhang Z-C, Tang C, Dong Y, Zhang J, Yuan T, Li X-L. Targeting LncRNA-MALAT1 suppresses the progression of osteosarcoma by altering the expression and localization of β-catenin. J Cancer. 2018;9:71–80.

    Article  Google Scholar 

  43. Duan G, Zhang C, Xu C, Xu C, Zhang L, Zhang Y. Knockdown of MALAT1 inhibits osteosarcoma progression via regulating the miR-34a/cyclin D1 axis. Int J Oncol. 2019;54:17–28.

    CAS  Google Scholar 

  44. Liu B, Zhan X, Liu C. Long noncoding RNA MALAT1 interacts with miR-124-3p to modulate osteosarcoma progression by targeting SphK1. J Oncol 2021; 2021:8390165.

  45. Zhang Y, Dai Q, Zeng F, Liu H. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the Rac1/JNK pathway via targeting MiR-509. Oncol Res Featur Preclin Clin Cancer Ther 2021;7:1–12.

  46. Malakoti F, Targhazeh N, Karimzadeh H, Mohammadi E, Asadi M, Asemi Z, Alemi F. The multiple function of lncRNA MALAT1 in cancer occurrence and progression. Chem Biol Drug Des. 2021. https://doi.org/10.1111/cbdd.14006.

    Article  Google Scholar 

  47. Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: functional implications. Non-coding RNA. 2020;6:22.

    Article  CAS  Google Scholar 

  48. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E. MALAT-1, a novel noncoding RNA, and thymosin β 4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.

    Article  Google Scholar 

  49. Sun Q, Hao Q, Prasanth KV. Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet. 2018;34:142–57.

    Article  CAS  Google Scholar 

  50. Wilusz JE, JnBaptiste CK, Lu LY, Kuhn C-D, Joshua-Tor L, Sharp PA. A triple helix stabilizes the 3’ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 2012;26:2392–407.

    Article  CAS  Google Scholar 

  51. Yang F, Yi F, Han X, Du Q, Liang Z. MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Lett. 2013;587:3175–81.

    Article  CAS  Google Scholar 

  52. Wang X, Sehgal L, Jain N, Khashab T, Mathur R, Samaniego F. LncRNA MALAT1 promotes development of mantle cell lymphoma by associating with EZH2. J Transl Med. 2016;14:1–14.

    Article  CAS  Google Scholar 

  53. Gholami A, Farhadi K, Sayyadipour F, Soleimani M, Saba F. Long noncoding RNAs (lncRNAs) in human lymphomas. Genes Dis. 2021;9:900–14.

    Article  Google Scholar 

  54. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, Zhang Y, Gorospe M, Prasanth SG, Lal A, Prasanth KV. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9:e1003368–e1003368.

    Article  CAS  Google Scholar 

  55. Liu P, Yang H, Zhang J, Peng X, Lu Z, Tong W, Chen J. The lncRNA MALAT1 acts as a competing endogenous RNA to regulate KRAS expression by sponging miR-217 in pancreatic ductal adenocarcinoma. Sci Rep. 2017;7:5186.

    Article  Google Scholar 

  56. Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.

    Article  CAS  Google Scholar 

  57. Zhang Y-F, Li C-S, Zhou Y, Lu X-H. Propofol facilitates cisplatin sensitivity via lncRNA MALAT1/miR-30e/ATG5 axis through suppressing autophagy in gastric cancer. Life Sci. 2020;244: 117280.

    Article  CAS  Google Scholar 

  58. Lu X, Chen D, Yang F, Xing N. Quercetin inhibits epithelial-to-mesenchymal transition (EMT) process and promotes apoptosis in prostate cancer via downregulating lncRNA MALAT1. Cancer Manag Res. 2020;12:1741.

    Article  CAS  Google Scholar 

  59. Paronetto MP, Dimauro I, Grazioli E, Palombo R, Guidotti F, Fantini C, Sgrò P, De Francesco D, Di Luigi L, Capranica L. Exercise-mediated downregulation of MALAT1 expression and implications in primary and secondary cancer prevention. Free Radical Biol Med. 2020;160:28–39.

    Article  CAS  Google Scholar 

  60. Peng N, He J, Li J, Huang H, Huang W, Liao Y, Zhu S. Long noncoding RNA MALAT1 inhibits the apoptosis and autophagy of hepatocellular carcinoma cell by targeting the microRNA-146a/PI3K/Akt/mTOR axis. Cancer Cell Int. 2020;20:1–11.

    Article  Google Scholar 

  61. Li Z-X, Zhu Q-N, Zhang H-B, Hu Y, Wang G, Zhu Y-S. MALAT1: a potential biomarker in cancer. Cancer Manag Res. 2018;10:6757.

    Article  CAS  Google Scholar 

  62. Liang J, Liang L, Ouyang K, Li Z, Yi X. MALAT 1 induces tongue cancer cells’ EMT and inhibits apoptosis through Wnt/β-catenin signaling pathway. J Oral Pathol Med. 2017;46:98–105.

    Article  CAS  Google Scholar 

  63. Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumor Biol. 2015;36:1477–86.

    Article  CAS  Google Scholar 

  64. Yang Z-m, Yang M-f, Yu W, Tao H-m. Molecular mechanisms of estrogen receptor β-induced apoptosis and autophagy in tumors: implication for treating osteosarcoma. J Int Med Res. 2019;47:4644–55.

    Article  CAS  Google Scholar 

  65. Fang D, Yang H, Lin J, Teng Y, Jiang Y, Chen J, Li Y. 17β-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner. Biochem Biophys Res Commun. 2015;457:500–6.

    Article  CAS  Google Scholar 

  66. Ren D, Zheng H, Fei S, Zhao JL. MALAT1 induces osteosarcoma progression by targeting miR-206/CDK9 axis. J Cell Physiol. 2019;234:950–7.

    Article  CAS  Google Scholar 

  67. Luo W, He H, Xiao W, Liu Q, Deng Z, Lu Y, Wang Q, Zheng Q, Li Y. MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A. Oncotarget. 2016;7:54733–43.

    Article  Google Scholar 

  68. Zhang J, Piao C-D, Ding J, Li Z-W. LncRNA MALAT1 facilitates lung metastasis of osteosarcomas through miR-202 sponging. Sci Rep. 2020;10:12757.

    Article  CAS  Google Scholar 

  69. Li Q, Pan X, Wang X, Jiao X, Zheng J, Li Z, Huo Y. Long noncoding RNA MALAT1 promotes cell proliferation through suppressing miR-205 and promoting SMAD4 expression in osteosarcoma. Oncotarget. 2017;8: 106648.

    Article  Google Scholar 

  70. Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel insights into the roles of Rho kinase in cancer. Arch Immunol Ther Exp. 2016;64:259–78.

    Article  CAS  Google Scholar 

  71. Guan H, Tan P, Xie L, Mi B, Fang Z, Li J, Yue J, Liao H, Li F. FOXO1 inhibits osteosarcoma oncogenesis via Wnt/β-catenin pathway suppression. Oncogenesis. 2015;4: e166.

    Article  CAS  Google Scholar 

  72. Wang J, Sun G. FOXO1-MALAT1-miR-26a-5p Feedback loop mediates proliferation and migration in osteosarcoma cells. Oncol Res Featur Preclin Clin Cancer Ther. 2017;25:1517–27.

    Google Scholar 

  73. Tripathi A, Shrinet K, Kumar A. HMGB1 protein as a novel target for cancer. Toxicol Rep. 2019;6:253–61.

    Article  CAS  Google Scholar 

  74. Liu K, Huang J, Ni J, Song D, Ding M, Wang J, Huang X, Li W. MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142–3p and miR-129–5p. Cell Cycle. 2017;16:578–87.

    Article  CAS  Google Scholar 

  75. Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 2020;19:5.

    Article  Google Scholar 

  76. Sun Y, Qin B. Long noncoding RNA MALAT1 regulates HDAC4-mediated proliferation and apoptosis via decoying of miR-140-5p in osteosarcoma cells. Cancer Med. 2018;7:4584–97.

    Article  CAS  Google Scholar 

  77. Takahashi M, Kawai K, Asai N. Roles of the RET proto-oncogene in cancer and development. JMA J. 2020;3:175–81.

    Article  Google Scholar 

  78. Chen Y, Huang W, Sun W, Zheng B, Wang C, Luo Z, Wang J, Yan W. LncRNA MALAT1 promotes cancer metastasis in osteosarcoma via activation of the PI3K-Akt signaling pathway. Cell Physiol Biochem. 2018;51:1313–26.

    Article  CAS  Google Scholar 

  79. Liu K, Zhang Y, Liu L, Yuan Q. MALAT1 promotes proliferation, migration, and invasion of MG63 cells by upregulation of TGIF2 via negatively regulating miR-129. Onco Targets Ther. 2018;11:8729–40.

    Article  CAS  Google Scholar 

  80. Sun Z, Zhang T, Chen B. Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes proliferation and metastasis of osteosarcoma cells by targeting c-Met and SOX4 via miR-34a/c-5p and miR-449a/b. Med Sci Monit. 2019;25:1410–22.

    Article  CAS  Google Scholar 

  81. Wang Q, Liu M-J, Bu J, Deng J-L, Jiang B-Y, Jiang L-D, He X-J. miR-485-3p regulated by MALAT1 inhibits osteosarcoma glycolysis and metastasis by directly suppressing c-MET and AKT3/mTOR signalling. Life Sci. 2021;268: 118925.

    Article  CAS  Google Scholar 

  82. Hosokawa Y, Arnold A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosom Cancer. 1998;22:66–71.

    Article  CAS  Google Scholar 

  83. Sa-Nguanraksa D, O-Charoenrat P. The role of vascular endothelial growth factor a polymorphisms in breast cancer. Int J Mol Sci. 2012;13:14845–64.

    Article  CAS  Google Scholar 

  84. Vimalraj S, Subramanian R, Dhanasekaran A. LncRNA MALAT1 promotes tumor angiogenesis by regulating microRNA-150-5p/VEGFA signaling in osteosarcoma: in-vitro and in-vivo analyses. Front Oncol. 2021;11:742789–742789.

    Article  Google Scholar 

  85. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10:101.

    Article  Google Scholar 

  86. Jung Y-S, Park J-I. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med. 2020;52:183–91.

    Article  CAS  Google Scholar 

  87. Li F, Chen X, Shang C, Ying Q, Zhou X, Zhu R, Lu H, Hao X, Dong Q, Jiang Z. Bone marrow mesenchymal stem cells-derived extracellular vesicles promote proliferation, invasion and migration of osteosarcoma cells via the lncRNA MALAT1/miR-143/NRSN2/Wnt/β-catenin axis. Onco Targets Ther. 2021;14:737–49.

    Article  CAS  Google Scholar 

  88. Chen Q, Xie J, Yang Y. Long non-coding RNA NRSN2-AS1 facilitates tumorigenesis and progression of ovarian cancer via miR-744-5p/PRKX axis. Biol Reprod. 2022;106:526–39.

    Article  Google Scholar 

  89. Da M, Zhuang J, Zhou Y, Qi Q, Han S. Role of long noncoding RNA taurine-upregulated gene 1 in cancers. Mol Med. 2021;27:51.

    Article  CAS  Google Scholar 

  90. Chiappetta C, Leopizzi M, Censi F, Puggioni C, Petrozza V, Rocca CD, Di Cristofano C. Correlation of the Rac1/RhoA pathway with ezrin expression in osteosarcoma. Appl Immunohistochem Mol Morphol. 2014;22:162–70.

    Article  CAS  Google Scholar 

  91. Archibald A, Mihai C, Macara IG, McCaffrey L. Oncogenic suppression of apoptosis uncovers a Rac1/JNK proliferation pathway activated by loss of Par3. Oncogene. 2015;34:3199–206.

    Article  CAS  Google Scholar 

  92. Yao C, Ruan J-W, Zhu Y-R, Liu F, Wu H-M, Zhang Y, Jiang Q. The therapeutic value of the SphK1-targeting microRNA-3677 in human osteosarcoma cells. Aging (Albany NY). 2020;12:5399.

    Article  CAS  Google Scholar 

  93. Cai Q, Zhao X, Wang Y, Li S, Wang J, Xin Z, Li F. LINC01614 promotes osteosarcoma progression via miR-520a-3p/SNX3 axis. Cell Signal. 2021;83: 109985.

    Article  CAS  Google Scholar 

  94. Liu C, Han X, Li B, Huang S, Zhou Z, Wang Z, Wang W. MALAT-1 is associated with the doxorubicin resistance in U-2OS osteosarcoma cells. Cancer Manag Res. 2021;13:6879–89.

    Article  Google Scholar 

  95. de Azevedo JWV, de Fernandes TAAM, Fernandes JV, de Azevedo JCV, Lanza DCF, Bezerra CM, Andrade VS, de Araujo JMG. Biology and pathogenesis of human osteosarcoma. Oncol lett. 2020;19:1099–116.

    Google Scholar 

  96. Zhao M, Wang S, Li Q, Ji Q, Guo P, Liu X. MALAT1: a long non-coding RNA highly associated with human cancers. Oncol Lett. 2018;16:19–26.

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MF, SN, OA, SHA, and SEKH. have made contributions to the writing of the manuscript. All authors have approved the submitted version of the article and have agreed to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shirin Azizidoost or Seyed Esmaeil Khoshnam.

Ethics declarations

Competing interests

The authors declare that there is no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, M., Najafi, S., Anbiyaee, O. et al. LncRNA MALAT1-related signaling pathways in osteosarcoma. Clin Transl Oncol 25, 21–32 (2023). https://doi.org/10.1007/s12094-022-02876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02876-x

Keywords

Navigation