Skip to main content

Advertisement

Log in

Glycopeptides: Insights Towards Resistance, Clinical Pharmacokinetics and Pharmacodynamics

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Glycopeptides have emerged as life-saving therapeutics in treating various gram-positive bacterial infections. Vancomycin being the first therapeutically approved glycopeptide has turned out as a blockbuster drug in the mitigation of gram-positive infections. However, long-term misuse of these glycopeptides led to the development of resistance which became a bottleneck in tackling various infections. Antimicrobial resistance has become a global threat exposing their impact on the public health domain. Concomitant to this the second-generation glycopeptides were developed through structural alterations and were approved by the USFDA which are serving as a last resort for an effective treatment. However, resistance against these also might develop shortly when misused. In this aspect, strategic approaches concerning structural activity for enhancing the antimicrobial activity and overcoming resistance were conferred. The clinical use of glycopeptides were also limited due to associated toxicity concerns and unusual pharmacokinetics. Understanding the pharmacokinetics of glycopeptides in different clinical conditions are necessary in tackling drug-induced resistance due to overdosing. Hence, dose optimization and therapeutic drug monitoring in different clinical conditions is necessary for better safety profiles and toxicity reduction. So, this review provides insights into glycopeptide-induced resistances, aspects of structural modifications to overcome resistance and their implications on pharmacokinetics and pharmacodynamics in different clinical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105:425–448. https://doi.org/10.1021/cr030103a

    Article  CAS  PubMed  Google Scholar 

  2. McComas CC, Crowley BM, Boger DL (2003) Partitioning the loss in vancomycin binding affinity for D-Ala-D-Lac into lost H-bond and repulsive lone pair contributions. J Am Chem Soc 125:9314–9315. https://doi.org/10.1021/ja035901x

    Article  CAS  PubMed  Google Scholar 

  3. Sarkar P, Yarlagadda V, Ghosh C, Haldar J (2017) A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm. 8:516–533. https://doi.org/10.1039/C6MD00585C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dhanda G, Sarkar P, Samaddar S, Haldar J (2018) Battle against vancomycin-resistant bacteria: recent developments in chemical strategies. J Med Chem 62:3184–3205. https://doi.org/10.1021/acs.jmedchem.8b01093

    Article  CAS  PubMed  Google Scholar 

  5. Acharya Y, Dhanda G, Sarkar P, Haldar J (2022) Pursuit of next-generation glycopeptides: a journey with vancomycin. Chem Commun 58:1881–1897. https://doi.org/10.1039/D1CC06635H

    Article  CAS  Google Scholar 

  6. Kociolek LK, Gerding DN (2016) Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat Rev Gastroenterol Hepatol 13:150–160. https://doi.org/10.1038/nrgastro.2015.220

    Article  CAS  PubMed  Google Scholar 

  7. Jenkins C, Meyer D, Dreyfus M, Larreu MJ (1974) Willebrand factor and ristocetin I. Mechanism of ristocetin-induced platelet aggregation. Br J Haematol 28:561–578. https://doi.org/10.1111/j.1365-2141.1974.tb06675.x

    Article  CAS  PubMed  Google Scholar 

  8. Meyer D, Jenkins C, Dreyflis M, Fressinaud E, Lariueu MJ (1974) Willebrand factor and ristocetin II. Relationship between willebrand factor, willebrand antigen and factor-VIII activity. Br J Haematol 28:579–599. https://doi.org/10.1111/j.1365-2141.1974.tb06676.x

    Article  CAS  PubMed  Google Scholar 

  9. Bager F et al (1997) Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev Vet Med 31:95–112. https://doi.org/10.1016/S0167-5877(96)01119-1

    Article  CAS  PubMed  Google Scholar 

  10. Nicolaou K, Boddy CN, Bräse S, Winssinger N (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem 38:2096–2152. https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15%3C2096::AID-ANIE2096%3E3.0.CO;2-F

    Article  CAS  Google Scholar 

  11. Griffith RSJJOAC (1984) Vancomycin use—an historical review. J Antimicrob Chemother 14:1–5. https://doi.org/10.1093/jac/14.suppl_D1

    Article  CAS  PubMed  Google Scholar 

  12. Blaskovich MA, Hansford KA, Butler MS, Jia Z, Mark AE, Cooper MA (2018) Developments in glycopeptide antibiotics. ACS Infect Dis 4:715–735. https://doi.org/10.1021/acsinfecdis.7b00258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams DH, Kalman JR (1977) Structural and mode of action studies on the antibiotic vancomycin. Evidence from 270-MHz proton magnetic resonance. J Am Chem Soc 99:2768–2774. https://doi.org/10.1021/ja00450a058

    Article  CAS  PubMed  Google Scholar 

  14. Barna J, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Ann Rev Microbiol 38:339–357

    Article  CAS  Google Scholar 

  15. Westwell MS, Bardsley B, Dancer RJ, Try AC, Williams DH (1996) Cooperativity in ligand binding expressed at a model cell membrane by the vancomycin group antibiotics. Chem Commun 5:589–590. https://doi.org/10.1039/cc9960000589

    Article  Google Scholar 

  16. Mackay JP et al (1994) Glycopeptide antibiotic activity and the possible role of dimerization: a model for biological signaling. J Am Chem Soc 116:4581–4590. https://doi.org/10.1021/ja00090a006

    Article  CAS  Google Scholar 

  17. Groves P, Searle MS, Mackay JP, Williams DH (1994) The structure of an asymmetric dimer relevant to the mode of action of the glycopeptide antibiotics. Structure 2:747–754. https://doi.org/10.1016/s0969-2126(94)00075-1

    Article  CAS  PubMed  Google Scholar 

  18. Mackay JP, Gerhard U, Beauregard DA, Maplestone RA, Williams DH (1994) Dissection of the contributions toward dimerization of glycopeptide antibiotics. J Am Chem Soc 116:4573–4580. https://doi.org/10.1021/ja00090a005

    Article  CAS  Google Scholar 

  19. Kannan R, Harris CM, Harris TM, Waltho JP, Skelton NJ, Williams DH (1988) Function of the amino sugar and N-terminal amino acid of the antibiotic vancomycin in its complexation with cell wall peptides. J Am Chem Soc 110:2946–2953. https://doi.org/10.1021/ja00217a042

    Article  CAS  Google Scholar 

  20. Butler MS, Blaskovich MA, Cooper MA (2013) Antibiotics in the clinical pipeline in 2013. J Antibiot 66:571–591

    Article  CAS  Google Scholar 

  21. Beauregard DA, Williams DH, Gwynn MN (1995) Knowles Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother 39:781–785. https://doi.org/10.1128/aac.39.3.781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Economou NJ et al (2013) Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach. Acta Cryst 69:520–533. https://doi.org/10.1107/S0907444912050469

    Article  CAS  Google Scholar 

  23. Barna JC, Williams DH, Williamson MP (1985) Structural features that affect the binding of teicoplanin, ristocetin A, and their derivatives to the bacterial cell-wall model N-acetyl-D-alanyl-D-alanine. J Chem Soc Chem Commun. https://doi.org/10.1039/c39850000254

    Article  Google Scholar 

  24. Charneski L, Patel PN, Sym DJAOP (2009) Telavancin: a novel lipoglycopeptide antibiotic. Ann Pharmacother 43:928–938. https://doi.org/10.1345/aph.1G417

    Article  CAS  PubMed  Google Scholar 

  25. Higgins DL, Chang R, Debabov DV (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134. https://doi.org/10.1128/aac.49.3.1127-1134.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karlowsky JA, Nichol K, Zhanel GG (2015) Telavancin: mechanisms of action, in vitro activity, and mechanisms of resistance. Clin Infect Dis 61:S58–S68. https://doi.org/10.1093/cid/civ534

    Article  CAS  PubMed  Google Scholar 

  27. Leadbetter MR, Adams SM, Bazzini B (2004) Hydrophobic vancomycin derivatives with improved ADME properties discovery of telavancin (TD-6424). J Antibiot 57:326–336. https://doi.org/10.7164/antibiotics.57.326

    Article  CAS  Google Scholar 

  28. Judice JK, Pace JL (2003) Semi-synthetic glycopeptide antibacterials. Biorg Med Chem Lett 13:4165–4168. https://doi.org/10.1016/j.bmcl.2003.08.067

    Article  CAS  Google Scholar 

  29. Lunde CS et al (2009) Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother 53:3375–3383. https://doi.org/10.1128/aac.01710-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfaller M, Rhomberg P, Sader H, Mendes R, Jones RN (2010) Telavancin activity against Gram-positive bacteria isolated from patients with skin and skin-structure infections. J Chemother 22:304–311. https://doi.org/10.1179/joc.2010.22.5.304

    Article  CAS  PubMed  Google Scholar 

  31. Malabarba A, Goldstein BP (2005) Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother 55:ii15–ii20. https://doi.org/10.1093/jac/dki005

    Article  CAS  PubMed  Google Scholar 

  32. Pace JL, Krause K, Johnston D (2003) In vitro activity of TD-6424 against Staphylococcus aureus. Antimicrob Agents Chemother 47:3602–3604. https://doi.org/10.1128/aac.47.11.3602-3604.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Economou NJ, Nahoum V, Weeks SD (2012) A carrier protein strategy yields the structure of dalbavancin. J Am Chem Soc 134:4637–4645. https://doi.org/10.1128/aac.47.11.3602-3604.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu W, Oberthür M, Leimkuhler C, Tao J, Kahne D, Walsh CT (2004) Characterization of a regiospecific epivancosaminyl transferase GtfA and enzymatic reconstitution of the antibiotic chloroeremomycin. PNAS 101:4390–4395. https://doi.org/10.1073/pnas.0400277101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bouza E, Burillo A (2010) Oritavancin: a novel lipoglycopeptide active against Gram-positive pathogens including multiresistant strains. Int J Antimicrob Agents 36:401–407. https://doi.org/10.1016/j.ijantimicag.2010.06.048

    Article  CAS  PubMed  Google Scholar 

  36. Pucci M, Callebaut C, Cathcart A, Bush K (2022) Recent epidemiological changes in infectious diseases. Clin Exp Pediatr. 65:167–171. https://doi.org/10.3345/cep.2021.01515

    Article  CAS  Google Scholar 

  37. Heydorn A, Petersen BO, Duus JØ, Bergmann S, Suhr-Jessen T, Nielsen J (2000) Biosynthetic studies of the glycopeptide teicoplanin by 1H and 13C NMR. J Biol Chem 275:6201–6206. https://doi.org/10.1074/jbc.275.9.6201

    Article  CAS  PubMed  Google Scholar 

  38. Biondi S, Chugunova E, Panunzio MJSINPC (2016) From Natural products to drugs: Glyco-and lipoglycopeptides, a new generation of potent cell wall biosynthesis inhibitors. Stud Nat Products Chem 50:249–297. https://doi.org/10.1016/B978-0-444-63749-9.00008-6

    Article  CAS  Google Scholar 

  39. Malabarba A, Goldstein BPJJOAC (2005) Origin, structure, and activity in vitro and in vivo of dalbavancin. J Antimicrob Chemother 55:ii15–ii20. https://doi.org/10.1093/jac/dki005

    Article  CAS  PubMed  Google Scholar 

  40. Cooper RD, Snyder NJ, Zweifel MJ, Staszak MA, Wilkie SC, Nicas TI, Mullen DL, Butler TF, Rodriguez MJ, Huff BEJTJOA (1996) Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot (Tokyo) 49:575–581. https://doi.org/10.7164/antibiotics.49.575

    Article  CAS  PubMed  Google Scholar 

  41. Kim SJ, Singh M, Schaefer J (2009) Oritavancin binds to isolated protoplast membranes but not intact protoplasts of Staphylococcus aureus. J Mol Biol 391:414–425. https://doi.org/10.1016/j.jmb.2009.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Belley A, Harris R, Beveridge T, Parr T Jr, Moeck G (2009) Ultrastructural effects of oritavancin on methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Antimicrob Agents Chemother 53:800–804. https://doi.org/10.1128/aac.00603-08

    Article  CAS  PubMed  Google Scholar 

  43. Belley A et al (2010) Oritavancin disrupts membrane integrity of Staphylococcus aureus and vancomycin-resistant enterococci to effect rapid bacterial killing. Antimicrob Agents Chemother 54:5369–5371. https://doi.org/10.1128/aac.00760-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murray CJ et al (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  CAS  Google Scholar 

  45. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Therapeutics 40:277

    Google Scholar 

  46. Organization WH (2019) Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline

  47. Nesher L, Rolston VI (2014) The current spectrum of infection in cancer patients with chemotherapy related neutropenia. J Infect Dis 42:5–13. https://doi.org/10.1007/s15010-013-0525-9

    Article  CAS  Google Scholar 

  48. Kawecki D, Pacholczyk M, Lagiewska B (2014) Bacterial and fungal infections in the early post-transplantation period after liver transplantation: etiologic agents and their susceptibility. Transplant Proc 46:2777–2781. https://doi.org/10.1016/j.transproceed.2014.08.031

    Article  CAS  PubMed  Google Scholar 

  49. Sarkar P, Haldar JJADR (2019) Glycopeptide antibiotics: mechanism of action and recent developments, pp 73–95. https://doi.org/10.1002/9781119282549.ch4

  50. Bugg TD, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. J Biochem 30:10408–10415. https://doi.org/10.1021/bi00107a007

    Article  CAS  Google Scholar 

  51. Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:1–10. https://doi.org/10.1186/s13756-019-0533-3

    Article  Google Scholar 

  52. Jaishankar J, Srivastava P (2017) Molecular basis of stationary phase survival and applications. Front Microbiol 8:2000. https://doi.org/10.3389/fmicb.2017.02000

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kaatz GW et al (1990) Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J Infect Dis 162:103–108. https://doi.org/10.1093/infdis/162.1.103

    Article  CAS  PubMed  Google Scholar 

  54. Hiramatsu K (2009) Resistance to glycopeptides. In: Staphylococci in human disease, p 193–209. https://doi.org/10.1002/9781444308464

  55. Yushchuk O et al (2020) Genetic insights into the mechanism of teicoplanin self-resistance in Actinoplanes teichomyceticus. J Antibiot 73:255–259. https://doi.org/10.1038/s41429-019-0274-9

    Article  CAS  Google Scholar 

  56. Kim S et al (2023) Increased incidence of teicoplanin-non-susceptible Staphylococcus epidermidis strains: a 6-year retrospective study. Sci Rep 13:12582. https://doi.org/10.1038/s41598-023-39666-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ashford P-A, Bew SP (2012) Recent advances in the synthesis of new glycopeptide antibiotics. Chem Soc Rev 41:957–978. https://doi.org/10.1039/c1cs15125h

    Article  CAS  PubMed  Google Scholar 

  58. Kosowska-Shick K, Clark C, Pankuch GA (2009) Activity of telavancin against staphylococci and enterococci determined by MIC and resistance selection studies. Antimicrob Agents Chemother 53:4217–4224. https://doi.org/10.1128/aac.00742-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goldstein EJ, Citron DM, Merriam CV (2004) In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp. Antimicrob Agents Chemother 48:2149–2152. https://doi.org/10.1128/aac.48.6.2149-2152.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hill CM et al (2010) Specificity of induction of the vanA and vanB operons in vancomycin-resistant enterococci by telavancin. Antimicrob Agents Chemother 54:2814–2818. https://doi.org/10.1128/AAC.01737-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lopez S, Hackbarth C, Romano G, Trias J, Jabes D, Goldstein BP (2005) In vitro antistaphylococcal activity of dalbavancin, a novel glycopeptide. J Antimicrob Chemother 55:ii21–ii24. https://doi.org/10.1093/jac/dki007

    Article  CAS  PubMed  Google Scholar 

  62. Arhin FF, Seguin DL, Belley A, Moeck G (2017) In vitro stepwise selection of reduced susceptibility to lipoglycopeptides in enterococci. Diagn Microbiol Infect Dis 89:168–171. https://doi.org/10.1016/j.diagmicrobio.2017.06.023

    Article  CAS  PubMed  Google Scholar 

  63. Jones RN, Sader HS, Flamm RK (2013) Update of dalbavancin spectrum and potency in the USA: report from the SENTRY antimicrobial surveillance program (2011). Diagn Microbiol Infect Dis 75:304–307. https://doi.org/10.1016/j.diagmicrobio.2012.11.024

    Article  CAS  PubMed  Google Scholar 

  64. Zhanel GG, Calic D, Schweizer F (2010) New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. J Drugs 70:859–886

    Article  CAS  Google Scholar 

  65. Ward KE, Mersfelder TL, LaPlante KL (2006) Oritavancin—an investigational glycopeptide antibiotic. Expert Opin Investig Drugs 15:417–429. https://doi.org/10.1517/13543784.15.4.417

    Article  CAS  PubMed  Google Scholar 

  66. Butler MS et al (2014) Glycopeptide antibiotics: back to the future. J Antibiot 67:631–644. https://doi.org/10.1038/ja.2014.111

    Article  CAS  Google Scholar 

  67. Rotschafer JC, Crossley K, Zaske D (1982) Pharmacokinetics of vancomycin: observations in 28 patients and dosage recommendations. Antimicrob Agents Chemother 22:391–394. https://doi.org/10.1128/aac.22.3.391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. He C-Y, Ye P-P, Liu B et al (2021) Population pharmacokinetics and dosing optimization of vancomycin in infants, children, and adolescents with augmented renal clearance. Antimicrob Agents Chemother 65:00897–01821. https://doi.org/10.1128/aac.00897-21

    Article  CAS  Google Scholar 

  69. Brauers J, Kresken M, Menke A, Orland A, Weiher H, Morrissey I (2007) Bactericidal activity of daptomycin, vancomycin, teicoplanin and linezolid against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium using human peak free serum drug concentrations. Int J Antimicrob Agents 29:322–325. https://doi.org/10.1016/j.ijantimicag.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  70. Bian X, Qu X, Zhang J et al (2022) Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 183:114171. https://doi.org/10.1016/j.addr.2022.114171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Turner RB, Kojiro K, Won R, Chang E, Chan D, Elbarbry FJDM (2018) Prospective evaluation of vancomycin pharmacokinetics in a heterogeneous critically ill population. Diagn Microbiol Infect Dis 92:346–351. https://doi.org/10.1016/j.diagmicrobio.2018.06.022

    Article  CAS  PubMed  Google Scholar 

  72. Medellín-Garibay SE, Ortiz-Martín B, Rueda-Naharro A, García B, Romano-Moreno S, Barcia EJJOAC (2016) Pharmacokinetics of vancomycin and dosing recommendations for trauma patients. J Antimicrob Chemother 71:471–479. https://doi.org/10.1093/jac/dkv372

    Article  CAS  PubMed  Google Scholar 

  73. Abdel Hadi O, Al Omar S, Nazer LH, Mubarak S, Le JJJOOPP (2016) Vancomycin pharmacokinetics and predicted dosage requirements in pediatric cancer patients. Pediatr Infect Dis J 22:448–453. https://doi.org/10.1097/00006454-199411000-00007

    Article  CAS  Google Scholar 

  74. Cojutti PG, Rinaldi M, Zamparini E, Rossi N, Tedeschi S, Conti M, Pea F, Viale PJAA (2021) Population pharmacokinetics of dalbavancin and dosing consideration for optimal treatment of adult patients with staphylococcal osteoarticular infections. Antimicrob Agents Chemother 65:02260–12220. https://doi.org/10.1128/AAC.02260-20

    Article  Google Scholar 

  75. Stroffolini G, De Nicolò A, Gaviraghi A, Mula J, Cariti G, Scabini S, Manca A, Cusato J, Corcione S, Bonora SJP (2022) Clinical effectiveness and pharmacokinetics of dalbavancin in treatment-experienced patients with skin, osteoarticular, or vascular infections. Pharmaceutics 14:1882. https://doi.org/10.3390/pharmaceutics14091882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van Matre E, Teitelbaum I, Kiser TJAA (2020) Intravenous and intraperitoneal pharmacokinetics of dalbavancin in peritoneal dialysis patients. Antimicrob Agents Chemother 64:02089–12019. https://doi.org/10.1128/AAC.02089-19

    Article  Google Scholar 

  77. Bradley JS, Puttagunta S, Rubino CM, Blumer JL, Dunne M, Sullivan JEJTPIDJ (2015) Pharmacokinetics, safety and tolerability of single dose dalbavancin in children 12–17 years of age. Pediatr Infect Dis J 34:748–752. https://doi.org/10.1097/inf.0000000000000646

    Article  PubMed  Google Scholar 

  78. Bunnell KL, Pai MP, Sikka M, Bleasdale SC, Wenzler E, Danziger LH, Rodvold KAJAA (2018) Pharmacokinetics of telavancin at fixed doses in normal-body-weight and obese (classes I, II, and III) adult subjects. Antimicrob Agents Chemother 62:02475–12417. https://doi.org/10.1128/AAC.02475-17

    Article  Google Scholar 

  79. Bradley JS, Goldman JL, James LP, Kaelin B, Gibson BH, Arrieta AJAA (2023) Pharmacokinetics and safety of a single dose of telavancin in pediatric subjects 2–17 years of age. Antimicrob Agents Chemother 67:e00987-e1923. https://doi.org/10.1128/aac.00987-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Worboys PD, Wong SL, Barriere SLJEJOCP (2015) Pharmacokinetics of intravenous telavancin in healthy subjects with varying degrees of renal impairment. Eur J Clin Pharmacol 71:707–714. https://doi.org/10.1007/s00228-015-1847-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Matzneller P, Österreicher Z, Reiter B, Lackner E, Stimpfl T, Zeitlinger MJJOAC (2016) Tissue pharmacokinetics of telavancin in healthy volunteers: a microdialysis study. J Antimicrob Chemother 71:3179–3184. https://doi.org/10.1093/jac/dkw269

    Article  CAS  PubMed  Google Scholar 

  82. Gharibian KN, Lewis SJ, Heung M, Segal JH, Salama NN, Mueller BAJJOAC (2022) Telavancin pharmacokinetics in patients with chronic kidney disease receiving haemodialysis. J Antimicrob Chemother 77:174–180. https://doi.org/10.1093/jac/dkab370

    Article  CAS  Google Scholar 

  83. Hagihara M, Kimura M, Hasegawa T, Umemura T, Mikamo H, Mori TJJOI (2012) Exploration of optimal teicoplanin dosage based on pharmacokinetic parameters for the treatment of intensive care unit patients infected with methicillin-resistant Staphylococcus aureus. J Infect Chemother 18:10–16. https://doi.org/10.1007/s10156-011-0272-8

    Article  CAS  PubMed  Google Scholar 

  84. Lim SK, Lee SA, Kim CW, Kang E, Choi YH, Park IJHI (2019) High variability of teicoplanin concentration in patients with continuous venovenous hemodiafiltration. Hemodial Int 23:69–76. https://doi.org/10.1111/hdi.12704

    Article  PubMed  Google Scholar 

  85. Bhavnani SM, Owen JS, Loutit JS, Porter SB, Ambrose PGJDM (2004) Pharmacokinetics, safety, and tolerability of ascending single intravenous doses of oritavancin administered to healthy human subjects. Diagn Microbiol Infect Dis 50:95–102. https://doi.org/10.1016/j.diagmicrobio.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  86. Grayson ML, Kucers A, Crowe S et al (2010) The use of antibiotics. Clin Rev Antibact Antifung Antivir Drugs 5:504–521

    Google Scholar 

  87. Peetermans WE, Hoogeterp JJ, Hazekamp-van Dokkum A-M, van den Broek P, Mattie M (1990) Antistaphylococcal activities of teicoplanin and vancomycin in vitro and in an experimental infection. Antimicrob Agents Chemother 34:1869–1874. https://doi.org/10.1128/aac.34.10.1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bernareggi A, Borghi A, Borgonovi M et al (1992) Teicoplanin metabolism in humans. Antimicrob Agents Chemother 36:1744–1749. https://doi.org/10.1128/aac.36.8.1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang T, Sun D, Shu Z et al (2020) Population pharmacokinetics and model-based dosing optimization of teicoplanin in pediatric patients. Front Pharmacol 11:594562. https://doi.org/10.3389/fphar.2020.594562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shaw J-P et al (2010) Mass balance and pharmacokinetics of [14C] telavancin following intravenous administration to healthy male volunteers. Antimicrob Agents Chemother 54:3365–3371. https://doi.org/10.1128/aac.01750-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shaw J, Seroogy J, Kaniga K et al (2005) Pharmacokinetics, serum inhibitory and bactericidal activity, and safety of telavancin in healthy subjects. Antimicrob Agents Chemother 49:195–201. https://doi.org/10.1128/aac.49.1.195-201.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wong SL, Barriere SL, Kitt MM, Goldberg MR (2008) Multiple-dose pharmacokinetics of intravenous telavancin in healthy male and female subjects. J Antimicrob Chemother 62:780–783. https://doi.org/10.1093/jac/dkn273

    Article  CAS  PubMed  Google Scholar 

  93. Saravolatz LD, Stein GE, Johnson LB (2009) Telavancin: a novel lipoglycopeptide. Clin Infect Dis 49:1908–1914. https://doi.org/10.1086/648438

    Article  CAS  PubMed  Google Scholar 

  94. Wilson A (2000) Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet 39:167–183

    Article  CAS  PubMed  Google Scholar 

  95. Molina KC, Miller MA, Mueller SW, Van Matre ET, Krsak M, Kiser TH (2022) Clinical pharmacokinetics and pharmacodynamics of dalbavancin. Clin Pharmacokinet 61:363–374

    Article  CAS  PubMed  Google Scholar 

  96. Liu F, Rajabi S, Shi C, Afifirad G, Omidi N, Kouhsari E, Khoshnood S, Azizian KJAOCM (2022) Antimicrobials, Antibacterial activity of recently approved antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) strains: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 21:1–12. https://doi.org/10.1186/s12941-022-00529-z

    Article  CAS  Google Scholar 

  97. Sader HS, Mendes RE, Pfaller MA, Flamm RKJJOAC (2019) Antimicrobial activity of dalbavancin tested against Gram-positive organisms isolated from patients with infective endocarditis in US and European medical centres. J Antimicrob Chemother 74:1306–1310. https://doi.org/10.1093/jac/dkz006

    Article  CAS  PubMed  Google Scholar 

  98. Duncan LR, Sader HS, Huband MD, Flamm RK, Mendes REJMDR (2020) Antimicrobial activity of telavancin tested in vitro against a global collection of gram-positive pathogens, including multidrug-resistant isolates (2015–2017). Microb Drug Resist 26:934–943. https://doi.org/10.1089/mdr.2019.0104

    Article  CAS  PubMed  Google Scholar 

  99. Wu T, Meyer K, Harrington A, Danziger L, Wenzler EJJOAC (2019) In vitro activity of oritavancin alone or in combination against vancomycin-susceptible and-resistant enterococci. J Antimicrob Chemother 74:1300–1305. https://doi.org/10.1093/jac/dkz010

    Article  CAS  PubMed  Google Scholar 

  100. Saravolatz LD, Stein GEJCID (2015) Oritavancin: a long-half-life lipoglycopeptide. Clin Infect Dis 61:627–632. https://doi.org/10.1093/cid/civ311

    Article  CAS  PubMed  Google Scholar 

  101. Rubino CM, Bhavnani SM, Moeck G, Bellibas SE, Ambrose PG (2015) Population pharmacokinetic analysis for a single 1200-milligram dose of oritavancin using data from two pivotal phase 3 clinical trials. Antimicrob Agents Chemother 59:3365–3372. https://doi.org/10.1128/aac.00176-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carvalhaes CG, Sader HS, Streit JM, Castanheira M, Mendes RE (2022) Activity of oritavancin against Gram-positive pathogens causing bloodstream infections in the United States over 10 years: focus on drug-resistant enterococcal subsets (2010–2019). Antimicrob Agents Chemother 66:e0166721. https://doi.org/10.1128/AAC.01667-21

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

PST: Conceptualization, data curation, writing original draft. GG: Data curation, writing original draft. KA: Data curation, writing original draft. PS: Investigation, Supervision, Visualization, Writing – review & editing. NS: Investigation, Supervision, Visualization, Writing – review & editing. All authors contributed to the writing of original draft. All authors meet the ICMJ authorship criteria.

Corresponding author

Correspondence to Nitish Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paritala, S.T., Gandhi, G., Agrawal, K. et al. Glycopeptides: Insights Towards Resistance, Clinical Pharmacokinetics and Pharmacodynamics. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01273-y

Keywords

Navigation