Skip to main content

Advertisement

Log in

Diagnosis of Campylobacter spp. Isolates and Their Antimicrobial Susceptibility Patterns

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to reveal antibiotic resistance patterns and molecular characterization of quinolone resistance Campylobacter isolates in patients with diarrhea. Campylobacter spp. isolated from 35.33% of the total samples, most of which were from male patients aged 3 months to 10 years. Identifying isolates at the species level made in MALDI-TOF MS, 82.4% were C. jejuni, and 17.6% were C. coli. Respectively 94% (47/50), 58% (29/50), and 2% (1/50) resistance rates were determined for ciprofloxacin, tetracycline, and erythromycin. While C. jejuni isolates were more resistant to ciprofloxacin and tetracycline than C. coli, they showed no resistance to erythromycin. Quinolone resistance determining region (QRDR) were evaluated by mismatch amplification mutation test and all quinolone resistant strains gave positive results. One of the seven silent mutations identified was specific to this study, and two other novel mutations were also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Elhadidy M, Ali MM, El-Shibiny A et al (2020) Antimicrobial resistance patterns and molecular resistance markers of Campylobacter jejuni isolates from human diarrheal cases. PLoS ONE 15:e0227833. https://doi.org/10.1371/journal.pone.0227833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hizlisoy H, Sagiroglu P, Barel M et al (2023) Campylobacter jejuni and Campylobacter coli in human stool samples: antibiotic resistance profiles, putative virulence determinants and molecular characterization of the isolates. World J Microbiol Biotechnol 39:353

    Article  CAS  PubMed  Google Scholar 

  3. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter Infection. Clin Microbiol Rev 28:687–720. https://doi.org/10.1128/CMR.00006-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Epps SV, Harvey RB, Hume ME et al (2013) Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. Int J Environ Res Public Health 10:6292–6304. https://doi.org/10.3390/ijerph10126292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Savaşan S, Çiftçi A, Diker KS (2004) Emergence of quinolone resistance among chicken isolates of Campylobacter in Türkiye. Turkish J Vet Anim Sci 28:391–397

    Google Scholar 

  6. Kapperud G, Lassen J, Ostroff SM, Aasen S (1992) Clinical features of sporadic Campylobacter infections in Norway. Scand J Infect Dis 24:741–749. https://doi.org/10.3109/00365549209062459

    Article  CAS  PubMed  Google Scholar 

  7. Igwaran A, Okoh AI (2019) Human campylobacteriosis: a public health concern of global importance. Heliyon 5:e02814. https://doi.org/10.1016/j.heliyon.2019.e0281

    Article  PubMed  PubMed Central  Google Scholar 

  8. Butzler JP (2004) Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 10:868–876. https://doi.org/10.1111/j.1469-0691.2004.00983.x

    Article  PubMed  Google Scholar 

  9. Yoshida H, Bogaki M, Nakamura M, Nakamura S (1990) Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 34:1271–1272. https://doi.org/10.1128/AAC.34.6.1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lovin NM (2013) Resistance mechanisms in Campylobacter jejuni. Virulence 4:230–240. https://doi.org/10.4161/viru.23753

    Article  Google Scholar 

  11. Kayman T, Abay S, Hızlısoy H (2013) Identification of Campylobacter spp. isolates with phenotypic methods and multiplex polymerase chain reaction and their antibiotic susceptibilities. Mikrobiyoloji Bülteni. 47:230–239

    Article  CAS  PubMed  Google Scholar 

  12. Aydin F, Kayman T, Abay S, Hizlisoy H et al (2023) MLST genotypes and quinolone resistance profiles of Campylobacter jejuni isolates from various sources in Türkiye. Int J Food Microbiol 391:110137. https://doi.org/10.1016/j.ijfoodmicro.2023.110137

    Article  CAS  PubMed  Google Scholar 

  13. EUCAST (2022) The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf

  14. Portes IAB, Panzenhagen P, dos Santos AMP et al (2023) Antibiotic resistance in campylobacter: a systematic review of South American. Antibiotics 12:548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q (2009) Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Fut Microbiol 4:189–200

    Article  CAS  Google Scholar 

  16. Nachamkin I, Ung H, Li M (2002) Increasing Fluoroquinolone Resistance in Campylobacter jejuni, Pennsylvania, USA, 1982–2001. Emerg Infect Dis 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  17. Endtz HP, Ruijs GJ, van Klingeren B et al (1991) Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J Antimicrob Chemother 27:199–208. https://doi.org/10.1093/jac/27.2.199

    Article  CAS  PubMed  Google Scholar 

  18. Sam WI, Lyons MM, Waghorn DJ (1999) Increasing rates of ciprofloxacin resistant campylobacter. J Clin Pathol 52:708–712

    Article  Google Scholar 

  19. Hart WS, Heuzenroeder MW, Barton MD (2004) Antimicrobial resistance in Campylobacter spp. Escherichia coli and Enterococci associated with pigs in Australia. J Vet Med Sci Ser B 51:216–221. https://doi.org/10.1111/j.1439-0450.2004.00760.x

    Article  CAS  Google Scholar 

  20. Schönberg-Norio D, Hänninen ML, Katila ML et al (2006) Activities of telithromycin, erythromycin, fluoroquinolones, and doxycycline against Campylobacter strains isolated from Finnish subjects. Antimicrob Agents Chemother 50:1086–1088. https://doi.org/10.1128/AAC.50.3.1086-1088.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guerry P, Perez-Casal J, Yao R et al (1997) A genetic locus involved in iron utilization unique to some Campylobacter strains. J Bacteriol 179:3997–4002. https://doi.org/10.7589/0090-3558-47.3.750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Skjøt-Rasmussen L, Ethelberg S, Emborg HD et al (2009) Trends in occurrence of antimicrobial resistance in Campylobacter jejuni isolates from broiler chickens, broiler chicken meat, and human domestically acquired cases and travel associated cases in Denmark. Int J Food Microbiol 131:277–279. https://doi.org/10.1016/j.ijfoodmicro.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  23. Han J, Sahin O, Barton YW (2008) Zhang Q () Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni. PLoS Pathog 4:e1000083. https://doi.org/10.1371/journal.ppat.1000083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hizlisoy H, Kılıç H (2015) Broiler karkaslarından izole edilen Campylobacter jejuni izolatlarının makrolid, kinolon ve tetrasiklin grubu antibiyotiklere karşı direnç durumu. Erciyes Üniv Vet Fak Derg 12:81–92

    Google Scholar 

  25. Gusbi MM (2007) Aetiology of acute diarrhea in hospitalized children Tripoli-Libya. Jamahiriya Med J 1:23–29

    Google Scholar 

  26. Solomon EB, Hoover DG (1999) Campylobacter jejuni: a bacterial paradox. J Food Saf 19:121–136. https://doi.org/10.1111/j.1745-4565.1999.tb00239.x

    Article  Google Scholar 

  27. Gibreel A, Taylor DE (2006) Macrolide resistance in Campylobacter jejuni and Campylobacter coli. J Antimicrob Chemother 58:243–255. https://doi.org/10.1093/jac/dkl210

    Article  CAS  PubMed  Google Scholar 

  28. Englen MD, Hill AE, Dargatz DA, Ladely SR, Fedorka-Cray PJ (2007) Prevalence and antimicrobial resistance of Campylobacter in US dairy cattle. J Appl Microbiol 102:1570–1577. https://doi.org/10.1111/j.1365-2672.2006.03189.x

    Article  CAS  PubMed  Google Scholar 

  29. Papavasileiou E, Voyatzi A, Papavasileiou K et al (2007) Antimicrobial susceptibilities of Campylobacter jejuni isolates from hospitalized children in Athens, Greece, collected during 2004–2005. Eur J Epidemiol 22:77–78. https://doi.org/10.1007/s10654-006-9080-3

    Article  CAS  PubMed  Google Scholar 

  30. Hong J, Kim JM, Jung WK et al (2007) Prevalence and antibiotic resistance of Campylobacter spp. isolated from chicken meat, pork, and beef in Korea from 2001 to 2006. J Food Prot 70:860–866. https://doi.org/10.4315/0362-028X-70.4.860

    Article  CAS  PubMed  Google Scholar 

  31. Premarathne J, Anuar AS, Thung TY et al (2017) Prevalence and antibiotic resistance against tetracycline in Campylobacter jejuni and C. coli in Cattle and Beef Meat from Selangor, Malaysia. Front Microbiol 8:2254. https://doi.org/10.3389/fmicb.2017.02254/full

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hong J, Berrang ME, Liu T et al (2007) Prevalence and antibiotic resistance of Campylobacter spp. isolated from chicken meat, pork, and beef in Korea, from 2001 to 2006. J Food Prot 70:860–866

    Article  CAS  PubMed  Google Scholar 

  33. Komba EV, Mdegela RH, Msoffe PLM, Nielsen LN, Ingmer H (2015) Prevalence, antimicrobial resistance and risk factors for thermophilic Campylobacter infections in symptomatic and asymptomatic humans in Tanzania. Zoo Public Health 62:557–568. https://doi.org/10.1111/zph.12185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would also like to thank Prof. Dr. Semih Yılmaz, Abeer Babiker, Naima Sirad, and Sümeyye Temizgül for their contributions. The studies were conducted in the Bacteriology Laboratory of the Faculty of Medicine and the laboratories of the Faculty of Science and Faculty of Agriculture, Erciyes University. We specially thank Erciyes University Editing office for language improvement.

Funding

This work was supported by the Erciyes University Research Projects Unit (Grand Number: FYL-2022-12124).

Author information

Authors and Affiliations

Authors

Contributions

HAKA conceived and performed the experiment and contributed to the analysis, AA was involved in processing the experimental data, performed the analysis, drafted the manuscript. PS and MAA aided in interpreting the results, all authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Abdurrahman Ayvaz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alobaidy, H.A.K., Ayvaz, A., Sağiroğlu, P. et al. Diagnosis of Campylobacter spp. Isolates and Their Antimicrobial Susceptibility Patterns. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01199-5

Keywords

Navigation